CULTURAL RESOURCES SURVEY OF
THE ARCADIA-DEBORDIEU 115kV TRANSMISSION LINE,
GEORGETOWN COUNTY,
SOUTH CAROLINA

Prepared By:
Michael Trinkley, Ph.D.
and
Nicole Southerland

Prepared For:
Mr. Eric McClanahan
S&ME
840 Low Country Blvd.
Mt. Pleasant, SC 29464

CHICORA RESEARCH CONTRIBUTION 388

Chicora Foundation, Inc.
PO Box 8664
Columbia, SC 29202-8664
803/787-6910
Email: chicora@bellsouth.net
www.chicora.org

July 25, 2003

This report is printed on permanent paper ♥
ABSTRACT

This report provides the results of a cultural resources investigation of a 4.6 mile transmission line situated in the eastern portion of Georgetown County. The study was conducted by Dr. Michael Trinkley of Chicora Foundation for Mr. Eric McClanahan of S&ME and is intended to assist Santee Cooper comply with Section 106 of the National Historic Preservation Act and the regulations codified in 36CFR800.

The corridor is to be used by Santee Cooper for the construction of the Arcadia-Debordieu Transmission Line. The proposed corridor will start at the existing Arcadia Substation and will end at a proposed Debordieu Substation. The majority of the corridor follows U.S. 17.

The proposed route will require the clearing of the corridor, followed by construction of the proposed transmission line. These activities have the potential to affect archaeological and historical sites which may be in the project corridor. For this study an area of potential effect (APE) 0.5 mile around the proposed transmission line was assumed. It should be noted, however, that U.S. 17, one of the main routes for beach traffic along the coast, parallels the proposed corridor.

Consultation with the S.C. Department of Archives and History revealed no previously identified sites. There is no comprehensive survey of standing architectural sites for Georgetown County.

An investigation of the archaeological site files at the S.C. Institute of Archaeology and Anthropology identified twenty-two sites within a 0.5 mile radius. Nine of these sites are prehistoric, all but two representing Woodland period scatters. Of these 22 sites four are recommended eligible, five potentially eligible, and 13 not eligible.

The archaeological study of the tract incorporated shovel testing at 100-foot intervals along the center line of the proposed corridor that was, on average, 39 feet in width. All shovel test fill was screened through ¼-inch mesh and the shovel tests were backfilled at the completion of the study. A total of 243 shovel tests were excavated in the survey corridor along with an additional six tests performed for the newly identified site.

One archaeological site, 38GE564, was identified as a result of these investigations. This is a twentieth century farm which is recommended not eligible for the National Register.

This project did not include a survey of standing architectural sites. None, however, were found within or immediately adjacent to the corridor.

It is possible that archaeological remains may be encountered in the project area during construction. Construction crews should be advised to report any discoveries of concentrations of artifacts (such as bottles, ceramics, or projectile points) or brick rubble to the project engineer, who should in turn report the material to the State Historic Preservation Office or to Chicora Foundation (the process of dealing with late discoveries is discussed in 36CFR800.13(b)(3)). No construction should take place in the vicinity of these late discoveries until they have been examined by an archaeologist and, if necessary, have been processed according to 36CFR800.13(b)(3).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>5</td>
</tr>
<tr>
<td>Physiography</td>
<td>5</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>5</td>
</tr>
<tr>
<td>Floristics</td>
<td>6</td>
</tr>
<tr>
<td>Climate</td>
<td>6</td>
</tr>
<tr>
<td>Prehistoric Environment</td>
<td>7</td>
</tr>
<tr>
<td>Prehistoric and Historic Synopsis</td>
<td>11</td>
</tr>
<tr>
<td>Previous Research</td>
<td>11</td>
</tr>
<tr>
<td>Prehistory of the Region</td>
<td>11</td>
</tr>
<tr>
<td>Historical Synopsis</td>
<td>14</td>
</tr>
<tr>
<td>Research Methods</td>
<td>21</td>
</tr>
<tr>
<td>Archaeological Field Methods</td>
<td>21</td>
</tr>
<tr>
<td>Site Evaluation</td>
<td>22</td>
</tr>
<tr>
<td>Laboratory Analysis</td>
<td>22</td>
</tr>
<tr>
<td>Results of Survey</td>
<td>25</td>
</tr>
<tr>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>Archaeological Resource</td>
<td>25</td>
</tr>
<tr>
<td>Conclusions</td>
<td>29</td>
</tr>
<tr>
<td>Sources Cited</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure
1. Project vicinity in Georgetown County 2
2. Project corridor with previously identified sites 3
3. View of pines in the project corridor 5
4. View of wetlands in the project corridor 7
5. Generalized cultural sequence for South Carolina 12
6. Portion of Mills' Atlas showing the vicinity of the corridor 16
7. Portion of the 1911 soil map of Georgetown County showing the project corridor 18
8. Portion of the 1939 General Highway and Transportation Map of Georgetown County 19
9. View of Arcadia Substation 21
10. Topographic map showing the site 25
11. Sketch map and soil profile for the identified site 26
12. 1939 map showing Quail Farm 26
13. View of troughs in the site area 27

LIST OF TABLES

Table
1. Previously identified sites in project APE 4
INTRODUCTION

This investigation was conducted by Dr. Michael Trinkley of Chicora Foundation, Inc. for Mr. Eric McClanahan of S&ME. The work was conducted to assist Santee Cooper comply with Section 106 of the National Historic Preservation Act and the regulations codified in 36CFR800.

The project site consists of a 4.6 mile corridor proposed to be used for a transmission line in eastern Georgetown County (Figure 1). The corridor starts at the existing Arcadia substation and connects to the proposed Debordieu substation (Figure 2). A majority of the line follows U.S. 17.

The corridor consists of low flat areas of wetlands and slightly higher areas of planted pines and hardwoods. The surrounding area is being rapidly developed, although very few structures were encountered along the corridor.

The corridor, as previously mentioned, is intended to be used as a transmission route. The proposed width of the corridor is 30 feet. Landscape alteration, primarily clearing, as well as subsequent erection of the wood poles, will cause some damage to the ground surface and any archaeological resources which may be present in the survey area.

Construction, operation, and maintenance of the transmission line may also have an impact on historic resources in the project area. Powerline corridors (as well as other above grade projects) may detract from the visual integrity of historic properties, creating what many consider discordant surroundings. Because of the small size of the poles to be used (80 feet or less in height), this impact is anticipated to be modest. In addition, about 20,000 feet of the survey corridor, parallels a four lane highway (U.S. 17). No architectural survey was incorporated into this project.

This study does not consider any future secondary impact of the project, including increased or expanded development of this portion of Georgetown county.

We were requested by Mr. Eric McClanahan of S&ME to conduct a cultural resources background check for the proposed transmission line on July 9, 2003. This incorporated a review of the site files at the South Carolina Institute of Archaeology and Anthropology. As a result of that work, twenty-two sites were found within the APE. Table 1 gives a summary of the sites found.

In addition, the South Carolina Department of Archives and History GIS was consulted to check for any NRHP buildings, districts, structures, sites, or objects in the study area. No NRHP sites were found within the 0.5 mile APE, although no comprehensive survey has been completed for either Georgetown county. A cartographic survey, however, has been performed to identify areas with a high probability for archaeological or architectural remains (Hacker and Trinkley 1993).

Archival and historical research was limited to a review of secondary sources available in the Chicora Foundation files.

The archaeological survey was conducted from July 22-24, 2003 by Mr. Tom Covington and Ms. Nicole Southerland under the direction of Dr. Michael Trinkley and revealed one archaeological site, 38GE564. Report production was conducted at Chicora's laboratories in Columbia, South Carolina from July 25-30, 2003.

One archaeological site form for the site in this study, has been filed with the South Carolina Institute of Archaeology and Anthropology (SCIAA). The field notes resulting from these investigations will be curated at SCIAA using their accessioning and cataloging system once the project is complete. All records and
Figure 1. Project vicinity in Georgetown County (basemap is USGS South Carolina 1:500,000).
Figure 2. Project corridor and previously identified sites (basemap is USGS Waverly Mills 7.5').
Table 1.
Previously identified sites in project APE

<table>
<thead>
<tr>
<th>Site #</th>
<th>Description</th>
<th>NRHP Status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>38GE307</td>
<td>Late 19th-Early 20th c. scatter</td>
<td>not eligible</td>
<td>Espenshade et al. 1990</td>
</tr>
<tr>
<td>38GE308</td>
<td>Historic kiln</td>
<td>eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE310</td>
<td>Late 19th-Early 20th c. scatter</td>
<td>potentially eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE111</td>
<td>Woodland scatter</td>
<td>not eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE315</td>
<td>Woodland scatter</td>
<td>not eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE316</td>
<td>Early-Middle Woodland scatter</td>
<td>not eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE317</td>
<td>Tar kiln</td>
<td>not eligible</td>
<td>Poplin 1997</td>
</tr>
<tr>
<td>38GE318</td>
<td>Early-Middle Woodland scatter</td>
<td>not eligible</td>
<td>Espenshade et al. 1990</td>
</tr>
<tr>
<td>38GE321</td>
<td>19th-20th c. slave/tenant settlement</td>
<td>eligible</td>
<td>Espenshade et al. 1990</td>
</tr>
<tr>
<td>38GE322</td>
<td>19th c. artifact scatter</td>
<td>eligible</td>
<td>Poplin 1997</td>
</tr>
<tr>
<td>38GE325</td>
<td>Historic kiln</td>
<td>eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE326</td>
<td>19th-20th c. tenant settlement</td>
<td>potentially eligible</td>
<td>Poplin 1997</td>
</tr>
<tr>
<td>38GE330</td>
<td>Historic kiln</td>
<td>potentially eligible</td>
<td>Espenshade and Brockington 1987</td>
</tr>
<tr>
<td>38GE331</td>
<td>Historic kiln</td>
<td>not eligible</td>
<td>Rust and Poplin 1994</td>
</tr>
<tr>
<td>38GE332</td>
<td>Early Woodland scatter</td>
<td>potentially eligible</td>
<td>Espenshade and Brockington 1987</td>
</tr>
<tr>
<td>38GE333</td>
<td>19th-20th c. tenant settlement</td>
<td>not eligible</td>
<td>Poplin 1997</td>
</tr>
<tr>
<td>38GE423</td>
<td>Late Archaic-Mississippian scatter</td>
<td>not eligible</td>
<td>Michie 1997</td>
</tr>
<tr>
<td>38GE545</td>
<td>Late Archaic-Late Woodland scatter</td>
<td>potentially eligible</td>
<td>Baluha et al. 2001</td>
</tr>
<tr>
<td>38GE546</td>
<td>Middle Woodland scatter</td>
<td>not eligible</td>
<td>Baluha et al. 2001</td>
</tr>
<tr>
<td>38GE547</td>
<td>Middle 20th c. scatter</td>
<td>not eligible</td>
<td>Baluha et al. 2001</td>
</tr>
<tr>
<td>38GE548</td>
<td>Tar kiln</td>
<td>not eligible</td>
<td>Baluha et al. 2001</td>
</tr>
<tr>
<td>38GE550</td>
<td>Early-Middle Woodland scatter</td>
<td>potentially eligible</td>
<td>Baluha et al. 2002</td>
</tr>
</tbody>
</table>

duplicate copies will be provided to SCIAA and will be maintained by that institution in perpetuity. The only photographic materials associated with this project are color prints, which are not archival. The negatives and prints for these photographs are retained by Chicora Foundation.
NATURAL ENVIRONMENT

Physiography

The project is situated in eastern Georgetown County. Georgetown County is bounded on the east by the Atlantic Ocean. To the northeast is Horry County and Marion County, while to the south are Berkeley and Charleston counties.

Georgetown County is situated in the northern lower coastal plain of South Carolina. The mainland topography consists of subtle undulations in the landscape characteristic of ridge and bay topography of beach ridge plains. Elevations in the county range from sea level to about 75 feet above mean sea level (AMSL) (Mathews et al. 1980:132).

The County is drained by five significant river systems, four of which (the Waccamaw, Black, Pee Dee, and Santee Rivers) have significant freshwater discharge and only one of which (the Sampit River) is dominated by tidal action. Because of the low topography, however, many broad, low gradient interior drains are present as either extensions of tidal streams and rivers or flooded bays and swales. There are many diverse wetland communities influenced by either the freshwater drainage or tidal flows. Upland vegetation in the

Geology and Soils

The geology is characteristic of the Coastal Plain. The parent materials of the soils are marine or fluvial deposits which consist of varying amounts of sands, silts, and clays. There is one primary geologic formations in the project area, deposited at different periods during alternating transgression and recession of the ocean: the Pamlico Terrace. The Pamlico terrace is the abandoned shore line about 25 feet AMSL (Cooke 1936:6).

Figure 3. View of pines in the project corridor.
The proposed transmission line crosses four individual soil series (Stuckey 1982). The majority of the line crosses Leon sands and Centenary fine sands while a smaller portion passes through Witherbee fine sands and Echaw sands. The Leon Series consists of poorly drained soils and an A1 horizon of very dark gray (10YR3/1) sand to a depth of 0.5 foot over a gray (10YR5/1) sand to a depth of 1.3 feet. Centenary soils are moderately well drained and have an A1 horizon of grayish brown (10YR5/2) fine sand to a depth of 0.6 foot over a light yellowish brown (10YR6/4) fine sand to a depth of 1.5 feet.

Witherbee soils are somewhat poorly drained and have an A1 horizon of very dark gray (10YR3/1) fine sand to a depth of 0.7 foot over a brownish yellow (10YR6/6) fine sand to a depth of 1.7 feet. The Echaw series consists of moderately well drained soils with an A1 horizon of grayish brown (10YR5/2) sand to a depth of 0.4 foot over a brown (10YR5/3) sand to a depth of 1.5 feet.

Mills (1972[1826]) comments that the swampland soils are composed of the "richest soil." He notes for the nearby Marion District that "while the swamp lands reclaimed and secured from freshets, will bring 50 dollars an acre; and the oak and hickory lands 15 dollars an acre; the pine lands will scarcely sell for 1 dollar per acre" (Mills 1972[1826]:623). The flatlands "are, by comparison, sand barrens; yet occasionally presenting some good timber land" (Mills 1972[1826]:513). And while the uplands were healthy, with summers free of disease, he observed that, "on the rivers, creeks, and flat lands, this district is subject to bilious fevers, and cannot be called healthy" (Mills 1972[1826]:515). The products cultivated during that time were "cotton, corn, wheat, pease, and potatoes" (Mills 1972[1826]:623).

Floristics

There are two major categories of plant communities, based primarily on topographic location, which exist in the project area. The first category consists of upland vegetation. Supported here are a mixture of coniferous and deciduous forests dominated by pines and broadleaf taxa such as upland oaks, sweetgum, hickories, and various understory species. Incorporated may be small upland depressions and drainages, which contain more hydric species.

Portions of the upland area were found to contain pine forest, typically found on soils of low fertility, high acidity, and excessive drainage. Most often these areas have been subjected to extensive disturbance, including repeated logging operations, and the pine represent an early stage of revegetation. A few areas of hardwood forest exist in the project corridor, where oaks, maple, sweetgum, black gum, and mockernut hickory are prevalent. More common, however are mixed forests, containing both pines and hardwoods.

Lowland forests, which account for the second category, are located on the floodplains and swamps of the corridor. These floodplain soils are forested with bald cypress, gum, sycamore, water hickory, lowland oaks, soft maples, willows, and other herbaceous species.

In the early nineteenth century Mills observed that:

The pine is the most common tree in the district, though the river swamps abound in the cypress, and along the margins with the various kinds of oak, hickory, poplar, chestnut, red-cedar, beach, sycamore, laurel, ash, cotton-tree, and a variety of others (Mills 1972[1826]: 565).

Mills noted that "large canoes . . . are sometimes made from a single [cypress tree]" (Mills 1972 [1826]:565).

Climate

The general climate of the area is characterized by mild humid conditions. This climate is influenced by the warm Gulf Stream, as well as by the Appalachian Mountains which block the coldest air masses. Other factors include latitude, elevation, distance from the ocean, and location with respect to the average tracts of migratory cyclones. Day to day weather is controlled primarily by the movement of pressure.
systems across the nation. However, during the summer months there are few complete exchanges of air masses because tropical maritime air persists for extended periods (Ward 1989).

The average annual precipitation in the four county area ranges from 49.6 inches and is unevenly distributed throughout the year, with 31.6 inches occurring from April through October which is the primary growing season (Ward 1989:112).

Georgetown County has a winter temperature at 49°F and a summer temperature at 88°F. Frozen precipitation occurs only one to three times a year during the winter season. The abundant supply of warm, moist and rela-tively unstable air produces fre-quent scattered showers and thunderstorms in the summer. Severe weather usually means violent thunderstorms, tornadoes, and hurricanes. The tropical storm season is in late summer and early fall, although storms may occur as early as May or as late as October (Baldwin 1973). Heavy rains and high winds occur with tropical storms about once every six years. Storms of hurricane intensity are much more infrequent. Notable droughts have occurred twice in modern times – in 1925 and 1954. Typically a serious drought may occur once every fifty years. Less severe dry periods have occurred more often, normally in late spring or in autumn (Pitts 1974:109).

Prehistoric Environment

A reconstruction of paleoenvironmental features has gradually emerged within the past several decades and is based on the work of Whitehead (1965, 1967, 1972, 1973) and Watts (1970, 1975, 1980). Unfortunately, our understanding of environmental change is general and is based almost entirely on pollen analysis of lake sediments and buried organic layers situated in Piedmont areas outside South Carolina. The pollen studies give evidence of vegetational changes which in turn provide suggestions concerning climatic change. These studies can be important to the archaeologist because they allow inferences to be drawn on the nature of the cultural-environmental interactions, such as the adaptive shifts human populations made to counter ecological shifts. It is recognized that these inferences must be based on the paleoenvironment, not the extant environment.

Based largely on work from southeastern Virginia and North Carolina, Whitehead (1965) has employed a tripartite division of the preceding 25,000 years: Full Glacial (25,000 - 15,000 B.P.),
Late Glacial (15,000 - 10,000 B.P.), and Post-Glacial or Holocene (10,000 B.P. - present).

During the Full Glacial the Coastal Plain was boreal, although the vegetation was sparse, which suggests a relatively dry climate. Voorhies (1974), based on a paleontological assemblage from east-central Georgia, suggests a cool, moist climate instead. Watts' (1980) work from White Pond at the edge of the Inner Coastal Plain, found jack pine, red spruce, and herbs which appear to reflect a boreal forest climate. During the Late Glacial period there was a gradual change to a hemlock-northern hardwoods forest type and eventually to a modern condition. From White Pond, Watts (1980) identified a forest dominated by oak, hickory, beech, and ironwood and interprets this assemblage as a mesic deciduous forest typical of a cool and moist environment.

The mesic deciduous forest began to change early in the Holocene and was replaced by a more xeric forest comprised of modern flora. Again from White Pond, Watts (1980) notes the rapid loss of hickory, beech, and ironwood after 9,500 B.P. with the equally rapid rise of southern pine species. The oak species remain, and sweet gum and tupelo are found. An essentially modern flora is postulated by Whitehead (1965) and Watts (1971) by 5,000 B.P. with the spread of oak-hickory forests.

Of considerable interest to the reconstruction of the environment of the Late Woodland and early Historic periods are the descriptions of the early explorers and surveyors. One of the earliest descriptions is by John Lawson during his 1701 journey through the interior of South Carolina. Lawson left Charleston on December 18, 1700 and fifty-nine days later, arrived at the English settlements on the Pamlico River. During this trip Lawson passed to the west of Sumter County and observed the High Hills of Santee from the west bank of the Santee River swamp. Lawson state he:

came to the most amazing Prospect I had seen since I had been in Carolina; we travell'd by a Swampside, which Swamp I believe to be no less than twenty miles over, the other Side being

as far as I could well discern, there appearing great Ridges of Mountains (Lefler 1967:32).

In addition, Lawson describes the swamp areas as "extraordinarily rich, and the Runs of Water well stor'd with Fowl" and the land as well "extraordinarily rich, black Mould" (Lefler 1967:32). That night Lawson and his fellow travelers were awoken by the "hideous Noise" or "Musick" which resulted from the "endless Numbers of Panters, Tygers, Wolves, and other Beasts of Prey, which take this Swamp for their Abode in the day, coming in whole Droves to hunt the Deer in the Night" (Lefler 1967:33). Lawson noted that the next morning his Indian guide, Santee Jack, "kill'd 15 Turkeys this Day; there coming out of the Swamp, (about sun-rising) Flocks of these Fowl, containing several hundreds in a Gang, who feed upon the acorns, it being most Oak that grow in these Woods" (Lefler 1967:33).

This view suggests that the hardwood swamp areas of the Inner Coastal Plain were highly productive hunting areas. In fact, Santee Jack told Lawson's group that they should not stop until they arrived at the swamp edge because the hunting away from the swamp (presumably in the Inner Coastal Plain's Flatwoods area "was not good" (Lefler 1967:31-32). This offers some minor ethnographic support for the previously discussed swamp ecology and significance.

An analysis of early historic plat records provides additional information helpful for a thorough understanding of the area's ecology. Plummer reconstructed forest types in Georgia, using original eighteenth century land survey maps which show boundary trees. He notes that:

species in the Coastal Plain of southeast Georgia numbered 8-14 kinds although lowlands probably supported more numerous taxa. The frequency of pines ranged from 71-99%; gum trees, either black or tupelo, were second ranked, followed by red bay and thin cypress The vegetation was pine-oak-
hickory at a ration of about 91:1:0.5 occurring on sandy sites and oaks, pines, sweet gum, hickory at about 42:20:7.6 on clayey sites (Plummer 1975:16).

Consequently, both the currently available data and this brief review of historic sources agree that the four county area might be defined by low swamp bottom lands which contain a wide variety of important subsistence items, and a sandy, rolling upland area which contains only minor subsistence resources because of its pine vegetation and rapidly permeable soils. It is probable that this dichotomy existed by 2,000 B.C. and perhaps as early as 5,000 B.C. (Haag 1975).
PREHISTORIC AND HISTORIC SYNOPSIS

Previous Research

In Georgetown County less than half of the surveys listed in Derting et al. (1991) are compliance reports. The main project near the current corridor involves Arcadia Plantation. Work has occurred from 1987 to 2002 (see Espenshade and Brockington 1987; Espenshade et al. 1990; Michie and Crites 1991; Rust and Poplin 1994; Michie 1995; McMakin and Poplin 1997; Poplin 1997; Baluha et al. 2001; Baluha et al. 2002). Another survey in the area involves the Debordieu Colony, the southern boundary of the corridor (Brockington 1986).

Prehistory of the Region

The Paleoindian period, lasting from 12,000 to 8,000 B.C., is evidenced by basally thinned, side-notched projectile points; fluted, lanceolate projectile points; side scrapers; end scrapers; and drills (Coe 1964; Michie 1977; Williams 1968). The Paleoindian occupation, while widespread, does not appear to have been intensive. Artifacts are most frequently found along major river drainages, which Michie interprets to support the concept of an economy “oriented towards the exploitation of now extinct mega-fauna” (Michie 1977:124).

Unfortunately, little is known about Paleoindian subsistence strategies, settlement systems, or social organization. Generally, archaeologists agree that the Paleoindian groups were at a band level of society (see Service 1966), were nomadic, and were both hunters and foragers. While population density, based on the isolated finds, is thought to have been low, Walthall suggests that toward the end of the period, “there was an increase in population density and in territoriality and that a number of new resource areas were beginning to be exploited” (Walthall 1980:30).

The Archaic period, which dates from 8000 to 2000 B.C., does not form a sharp break with the Paleoindian period, but is a slow transition characterized by a modern climate an increase in the diversity of material culture. Associated with this is a reliance on a broad spectrum of small mammals, although the white tailed deer was likely the most commonly exploited mammal. The chronology established by Coe (1964) for the North Carolina Piedmont may be applied with little modification to the South Carolina coastal plain and piedmont. Archaic period assemblages, characterized by corner-notched and broad stemmed projectile points, are fairly common, perhaps because the swamps and drainages offered especially attractive ecotones.

In the Coastal Plain of the South Carolina there is an increase in the quantity of Early Archaic remains, probably associated with an increase in population and associated increase in the intensity of occupation. While Hardaway and Dalton points are typically found as isolated specimens along riverine environments, remains from the following Palmer phase are not only more common, but are also found in both riverine and interriverine settings. Kirks are likewise common in the coastal plain (Goodyear et al. 1979).

The two primary Middle Archaic phases found in the coastal plain are the Morrow Mountain and Guilford (the Stanly and Halifax complexes identified by Coe are rarely encountered). Our best information on the Middle Woodland comes from sites investigated west of the Appalachian Mountains, such as the work in the Little Tennessee River Valley. The work at Middle Archaic river valley sites, with their evidence of a diverse floral and faunal subsistence base, seems to stand in stark contrast to Caldwell’s Middle Archaic “Old Quartz Industry” of Georgia and South Carolina, where axes, choppers, and ground and polished stone tools are very rare.
The Late Archaic is characterized by the appearance of large, square stemmed Savannah River projectile points (Coe 1964). These people continued the intensive exploitation of the uplands much like earlier Archaic groups. The bulk of our data for this period, however, comes from work in the Uwharrie region of North Carolina.

The Woodland period begins, by definition, with the introduction of fired clay pottery about 2000 B.C. along the South Carolina coast (the introduction of pottery, and hence the beginning of the Woodland period, occurs much later in the Piedmont of South Carolina). It should be noted that many researchers call the period from about 2500 to 1000 B.C. the Late Archaic because of a perceived continuation of the Archaic lifestyle in spite of the manufacture of pottery. Regardless of terminology, the period from 2500 to 1000 B.C. is well documented on the South Carolina coast and is characterized by Stallings (fiber-tempered) pottery. The

Figure 5. Generalized cultural sequence for South Carolina.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Period</th>
<th>Sub-Period</th>
<th>COASTAL</th>
<th>MIDDLE SAVANNAH VALLEY</th>
<th>CENTRAL CAROLINA PIEDMONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1715</td>
<td>MISS.</td>
<td>EARLY</td>
<td>Altamaha</td>
<td>Caraway</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>MISS.</td>
<td>LATE</td>
<td>Irene / Pee Dee</td>
<td>Hollywood</td>
<td>Dan River</td>
</tr>
<tr>
<td>1100</td>
<td>LATE</td>
<td>EARLY</td>
<td>Savannah</td>
<td>Lawton</td>
<td>Pee Dee</td>
</tr>
<tr>
<td>800</td>
<td>LATE</td>
<td>COASTAL</td>
<td>St. Catherine / Swift Creek</td>
<td>Savannah</td>
<td>Uwharrie</td>
</tr>
<tr>
<td>A.D. B.C.</td>
<td>WOODLAND</td>
<td>MIDDLE</td>
<td>Wilmington</td>
<td>Sand Tempered Wilmington</td>
<td>Yaccini</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>EARLY</td>
<td>Deptford</td>
<td>Deptford</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>LATE</td>
<td></td>
<td></td>
<td>Badin</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>LATE</td>
<td></td>
<td>Thorn's Creek</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td>Stallings</td>
<td>Savannah River</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>MIDDLE</td>
<td></td>
<td>Halifax</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td>EARLY</td>
<td></td>
<td>Guilford</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td>Morrow Mountain</td>
<td>Stallings</td>
<td></td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td>PALEOINDIAN</td>
<td></td>
<td></td>
<td>Cumberland, Clovis, Simpson</td>
</tr>
</tbody>
</table>
subistence economy during this early period was based primarily on deer hunting and fishing, with supplemental inclusions of small mammals, birds, reptiles, and shellfish.

Like the Stallings settlement pattern, Thom’s Creek sites are found in a variety of environmental zones and take on several forms. Thom’s Creek sites are found throughout the South Carolina Coastal Zone, Coastal Plain, and up to the Fall Line. The sites are found into the North Carolina Coastal Plain, but do not appear to extend southward into Georgia.

In the Coastal Plain drainage of the Savannah River there is a change of settlement, and probably subsistence, away from the riverine focus found in the Stallings Phase (Hanson 1982:13; Stoltman 1974:235-236). Thom’s Creek sites are more commonly found in the upland areas and lack evidence of intensive shellfish collection. In the Coastal Zone large, irregular shell middens; small, sparse shell middens; and large “shell rings” are found in the Thom’s Creek settlement system.

The Deptford phase, which dates from 1100 B.C. to A.D. 600, is best characterized by fine to coarse sandy paste pottery with a check stamped surface treatment. The Deptford settlement pattern involves both coastal and inland sites.

Inland sites such as 38AK228-W, 38LX5, 38RD60, and 38BM40 indicate the presence of an extensive Deptford occupation on the Fall Line and the Coastal Plain, although sandy, acidic soils preclude statements on the subsistence base (Anderson 1979; Ryan 1972; Trinkley 1980b). These interior or upland Deptford sites, however, are strongly associated with the swamp terrace edge, and this environment is productive not only in nut masts, but also in large mammals such as deer. Perhaps the best data concerning Deptford “base camps” comes from the Lewis-West site (38AK228-W), where evidence of abundant food remains, storage pit features, elaborate material culture, mortuary behavior, and craft specialization has been reported (Sassaman et al. 1990:96-98).

Throughout much of the Coastal Zone and Coastal Plain north of Charleston, a somewhat different cultural manifestation is observed, related to the “Northern Tradition” (e.g., Caldwell 1958). This recently identified assemblage has been termed Deep Creek and was first identified from northern North Carolina sites (Phelps 1983). The Deep Creek assemblage is characterized by pottery with medium to coarse sand inclusions and surface treatments of cord marking, fabric impressing, simple stamping, and net impressing. Much of this material has been previously designated as the Middle Woodland “Cape Fear” pottery originally typed by South (1976). The Deep Creek wares date from about 1000 B.C. to A.D. 1 in North Carolina, but may date later in South Carolina. The Deep Creek settlement and subsistence systems are poorly known, but appear to be very similar to those identified with the Deptford phase.

The Deep Creek assemblage strongly resembles Deptford both typologically and temporally. It appears this northern tradition of cord and fabric impressions was introduced and gradually accepted by indigenous South Carolina populations. During this time some groups continued making only the older carved paddle stamped pottery, while others mixed the two styles, and still others (and later all) made exclusively cord and fabric stamped wares.

The Middle Woodland in South Carolina is characterized by a pattern of settlement mobility and short-term occupation. On the southern coast it is associated with the Wilmington phase, while on the northern coast it is recognized by the presence of Hanover, McClellanville or Santee, and Mount Pleasant assemblages. The best data concerning Middle Woodland Coastal Zone assemblages comes from Phelps’ (1983:32-33) work in North Carolina. Associated items include a small variety of the Roanoke Large Triangular points (Coe 1964:110-111), sandstone abraders, shell pendants, polished stone gorgets, celts, and woven marsh mats. Significantly, both primary inhumation and cremations are found.

On the Coastal Plain of South Carolina, researchers are finding evidence of a Middle
Woodland Yadkin assemblage, best known from Coe's work at the Doerschuk site in North Carolina (Coe 1964:25-26). Yadkin pottery is characterized by a crushed quartz temper and cord marked, fabric impressed, and linear check stamped surface treatments. The Yadkin ceramics are associated with medium-sized triangular points, although Oliver (1981) suggests that a continuation of the Piedmont Stemmed Tradition to at least A.D. 300 coexisted with this Triangular Tradition. The Yadkin series in South Carolina was first observed by Ward (1978, 1983) from the White's Creek drainage in Marlboro County, South Carolina. Since then, a large Yadkin village has been identified by DePratter at the Dunlap site (38DA66) in Darlington County, South Carolina (Chester DePratter, personal communication 1985) and Blanton et al. (1986) and have excavated a small Yadkin site (389SU83) in Sumter County, South Carolina. Research at 38FL249 on the Roche Carolina tract in northern Florence County revealed an assemblage including Badin, Yadkin, and Wilmington wares (Trinkley et al. 1993:85-102). Anderson et al. (1982:299-302) offer additional typological assessments of the Yadkin wares in South Carolina.

Over the years the suggestion that Cape Fear might be replace by such types as Deep Creek and Mount Pleasant has raised considerable controversy. Taylor, for example, rejects the use of the North Carolina types in favor of those developed by Anderson et al. (1982) from their work at Mattassee Lake in Berkeley County (Taylor 1984:80). Cable (1991) is even less generous in his denunciation of ceramic constructs developed nearly a decade ago, also favoring adoption of the Mattassee Lake typology and chronology. This construct, recognizing five phases (Deptford I-III, McClellanville, and Santee I), uses a type variety system.

Regardless of terminology, these Middle Woodland Coastal Plain and Coastal Zone phases continue the Early Woodland Deptford pattern of mobility. While sites are found all along the coast and inland to the Fall Line, shell midden sites evidence sparse shell and artifacts. Gone are the abundant shell tools, worked bone items, and clay balls. Recent investigations at Coastal Zone sites such as 38BU747 and 38BU1214, however, have provided some evidence of worked bone and shell items at Deptford phase middens (see Trinkley 1990).

In many respects the South Carolina Late Woodland may be characterized as a continuation of previous Middle Woodland cultural assemblages. While outside the Carolinas there were major cultural changes, such as the continued development and elaboration of agriculture, the Carolina groups settled into a lifeway not appreciably different from that observed for the previous 500 to 700 years (cf. Sassaman et al. 1990:14-15). This situation would remain unchanged until the development of the South Appalachian Mississippian complex (see Ferguson 1971).

The South Appalachian Mississippian period, from about A.D. 1100 to A.D. 1640, is the most elaborate level of culture attained by the native inhabitants and is followed by cultural disintegration brought about largely by European disease. The period is characterized by complicated stamped pottery, complex social organization, agriculture, and the construction of temple mounds and ceremonial centers. The earliest phases include the Savannah and Pee Dee (A.D. 1200 to 1550).

Historical Synopsis

The first white settlers were drawn to the Waccamaw Neck area around Winyah Bay by the lure of lucrative Indian trade. The English, Scots, and French acquired land through proprietary and royal land grants, beginning as early as 1705. However, the majority of lands were granted in the 1730s (Rogers 1970:12, 20, 26). Access to water was an important factor in land development. The earliest policy was to grant narrow river frontage in order to give more settlers river access. Among the first grantees was Percival Pawley, who, through a series of land grants, obtained 24,000 acres on the Pee Dee, Sampit, and Waccamaw rivers in 1711 (Rogers 1970: 16-21).

Indigo was one of the area's first major
crops, but had a relatively short life of less than 50 years. Production, which began in the 1740s and reached its peak from 1754-1760, was artificially stimulated by an English bounty and King George’s War (1739-1749) which cut off England’s supplies in the French and Spanish West Indies. The crop grew particularly well along the Pee Dee, Black, and lower Waccamaw rivers. The processing of indigo required settling through a series of vats which drew flies and mosquitoes rendering it a fairly offensive labor (Kovacik and Winberry 1987:75). One 1755 account mentions:

indigo has a very disagreeable smell, while making and curing; and the foeces, when taken out of the steeper, if not immediately buried in the ground (for which it is excellent manure), breeds incredible swarms of flies (Carman 1939:281-290).

Indigo required a fairly major initial investment, estimated at slightly over £2,024 (Gray 1933:1:541). A major benefit, however, was that its production could be integrated with rice on the same plantation. James Governor Glen remarked:

I cannot leave this Subject without observing how conveniently and profitably, as to the Charge of Labor, both Indigo and Rice may be managed by the same Persons; for the labor attending Indigo being over in the Summer Months those who were employed in its may afterwards manufacture Rice in the ensuing Part of the Year, when it becomes most laborious; and after doing all this, they may have some time to spare for sawing Lumber and making Hogshead and other Staves to supply the Sugar Colonies (quoted in Carman 1939:289).

Unfortunately, indigo was “one of those rank weeds like tobacco, which not only exhaust the substance of the earth, but require the very best and richest lands” (Carman 1939:281-290).

In 1753 the Winyah Indigo Society in Georgetown County was officially organized and named Thomas Lynch, Sr. their first president. This group established a free school, a library, and functioned as a business and social club for members. By the end of the eighteenth century, planters along the Waccamaw, east of the survey corridor, as elsewhere, had abandoned indigo due to a market surplus and a devastation of caterpillars (Winberry 1979:92, 98; Lawson 1972:3-4; see also Huneycutt 1949).

The early economy in Georgetown also depended on naval stores, and to a lesser extent, on salt processing. In 1733 exports from the port of Georgetown included 7,361 barrels of pitch, 1,092 barrels of tar, and 1,926 barrels of turpentine (Bridwell 1982:12; Rogers 1970:46-47). In the mid-1700s shipbuilding was an important Georgetown industry. Bridwell notes that there is evidence of shipbuilding as early as 1738 and that by the late 1740s an active industry flourished in the Winyah Bay area (Bridwell 1982:14). By the mid-1750s this industry began to decline as other enterprises developed and the supply of shipwrights declined (Bridwell 1982:16).

Another crop was to have a more enduring and extensive effect on the economic and cultural life of the Waccamaw River in Georgetown County. Tidal rice culture began here in the 1730s and became the lifeblood of the Waccamaw until the slave system upon which it depended was ended by the Civil War.

George C. Rogers, in his study, The History of Georgetown County, attributes the rise of rice production in the area to four factors: rice cultivation had already been successfully developed in the province, a stable slave labor supply existed, land titles were stable and allowed for the accumulation of large tracts of property, and there were men who were ready to exploit this potential.

Georgetown District was the nation's
major rice-growing area. In 1826 Robert Mills observed that in Georgetown:

everything is fed on rice, horses and cattle eat the straw and hogs, fowls, etc. are sustained by the refuse, and man subsists upon the marrow of the grain. . . . The most valuable lands in the district are those called the tide lands The yield of these lands is immense . . . they average three barrels or 2000 pounds to the acre (Mills 1972 [1826]:558).

The early history of rice is discussed by Clowse (1971:125-132) and Doar (1936). Although the records of rice exportation are vague, they do indicate that production increased dramatically after 1705 (see Clowse 1971:167-168 for additional discussion). In the late Colonial period rice profitability also increased. Perkins observes that:

yields were from 2 to 4 barrels per acre, and most plantations had 2 or 3 acres under cultivation for each field hand. Based on an average price of £2.3 ($150) per barrel from 1768 to 1772, slaves generated revenues annually of from £9.2 up to £27.6 ($600-$1,800), with around £1.15 ($975) probably the average figure (Perkins 1980:58).

Although most of the rice production figures are developed from shipping out of Charleston, Bridwell mentions that 322 barrels of rice were shipped out of Georgetown itself in 1733 (Bridwell 1982:12). In 1731, the closest year for comparison, 48,238 barrels of rice were shipped from Charleston (Clowse 1971:Table III). The low figure for the Georgetown port is probably the result of rice being shipped from Georgetown to Charleston by small coasting vessels, with the information not included in the official shipping totals.

In 1840 Georgetown District produced 45 percent of the national rice crop. Between 1850 and 1860, production peaked. In 1850, 46,765,040 pounds of rice were produced in Georgetown County. By 1860, South Carolina produced nearly 64 percent of the total United States rice crop and one-half of the state's crop was grown in Georgetown District. The average yield on Georgetown plantations in 1860 was 1,568 lbs. per acre. Prices ranged from 2.0 to 4.3 cents per pound in the 1850s (Easterby 1945:36; Kovacik 1979:49).
Profits on rice plantations during the nineteenth century were variable. Governor Robert Francis Withers Allston reported in 1854 that “the profits of a rice plantation of good size and locality are about 8 percent per annum, independent of the privileges and perquisites of the plantation residence” (Easterby 1945:37). Peter Coclanis (1989:134-141) argues that while the annual net rate of return on rice cultivation was around 25 percent in the 1760s, it fell to an astounding -28 percent by 1859. Regardless, the plantation system was run almost entirely on credit, paying off each past year’s indebtedness with the sale of the new crop. Although the Georgetown rice economy was in a healthy, expanding condition in the antebellum years, the planter’s capital was constantly being invested in land and slaves (Sellers 1934:55-56). R.F.W. Allston was one of the district’s leading slave owners with nine plantations totaling over 6,000 acres. However, in 1859, he replied to the Blue Ridge Railroad Commission that he was unable to invest in the railroad:

I have no funds to invest. All that I am worth lies in South Carolina and is invested in land and negroes; the annual income from which is pledged before it is realized (Easterby 1941:162).

Large plantations were the rule. The demand for the limited prime coastal lands forced up land values and pushed out marginal planters. By the early 1800s a hierarchy had developed based upon distance from the sea. By 1850, 99 large planters (planters who harvested more than 100,000 pounds each) produced 98% of the District’s total rice crop (Rogers 1970:253; Lawson 1972:8).

Because of this reliance on slave labor, Georgetown District had the highest percentage of slaves in South Carolina. From 1810 to 1850, slaves made up 88% of the District’s total population and accounted for 85% of the population in 1860 (Rogers 1970: 328, 343).

The planters of Waccamaw Neck were a small aristocratic group, closely knit by ties of blood as well as common interest. They were rich, even by standards of most of South Carolina’s planters, and lived in a luxurious style. In 1839 planters along the Waccamaw, the Pee Dee, the Black, the Sampit, and Winyah Bay formed the Planters Club on the Pee Dee. In 1845 the men formed another organization, the Hot and Hot Fish Club, for “convivial and social intercourse” (Rogers 1970:228, 196).

The Civil War devastated Georgetown’s economy. One popular journal stated, “no other part of the United States knows so well as the Rice Coast what defeat in war can mean, for nowhere else in this country has a full-blown and highly developed civilization perished so completely” (Saas 1941:108).

Minimal documentation is available concerning the activities of the Waccamaw plantation freedmen following the war. There were some cases of looting and pillaging of the plantation homes, the “buckra houses.” At first, some freedmen stayed on the confiscated plantations and worked under supervision of the Freedmen’s Bureau. After restoration of the plantations, they signed work agreements with their former masters or other plantation owners whereby they were paid a set fee at the end of the planting season. Others turned from the rice fields to the burgeoning Georgetown timber industry for work. The majority of former slaves, it appears, remained on Waccamaw Neck. Here they could find ready food in the river and sea, and were among old friends and family. Too, the geographic isolation of the Neck may have reduced the travel incentive. Elsewhere small villages of freedmen apparently were formed, with the Moid settlement on Pennyroyal Road perhaps one example. Travel to Charleston, difficult and somewhat dangerous, required a boat and/or several ferry crossings (Lawson 1972:23; Genevieve Chandler Peterkin, personal communication, 1987; R.F.W. Allston Family Papers, South Caroliniana Library; see also the Freedmen’s Bureau Reports for Georgetown County, South Carolina Department of Archives and History).
Georgetown in 1862 threatened the plantation system. Union troops seized rice and contraband and set fire to rice fields as they went up the Waccamaw. Some planters continued trying to grow crops, but an estimated 75 percent of the county's plantation families moved to the interior of the state. The war was followed by successive crop failures in 1865, 1866, and 1867. Between 1860 and 1870, South Carolina's rice production fell nearly 73 percent. In Georgetown County, the 1879 crop was approximately 10% of the 1860 crop (Kovacik 1979:55). Financing next year's crop became a critical concern for planters who had traditionally depended on their factors for this service.

During this period, a number of things happened to land ownership: bankruptcies were common, the Freedmen's Bureau confiscated some lands and resettled former slaves on them, and other lands were sold at auction for nonpayment of loans or taxes. Companies such as Lachicotte and Sons and the Guendalos Company tried to profitably combine planting and rice milling to reduce operational costs. Efforts such as these managed to keep the rice industry alive until the turn of the century.

By the late nineteenth century Northern investors were buying up the old rice plantations of Georgetown. Having little, if any, interest in rice cultivation, many of these buyers used the plantations as game preserves for sport hunting. The loss of a stable and experienced work force, the competition from western rice lands, and finally the hurricanes of 1893, 1894, 1899, 1906, 1910, and 1911 that wrecked the dike system, ended the long history of rice production on the Georgetown rivers (Devereaux 1976:254-255; Lawson 1972:22-23, 409; Smith 1913:80). Elizabeth Allston Pringle of Chicora Wood wrote in 1906:

I fear the storm drops a dramatic, I may say tragic, curtain on my career as a rice planter. The rice plantation, which for years gave me the exhilaration of making a good income myself, is a thing of the past now – the banks and trunks have been washed away, and there is no money to replace them (Rogers 1970:488-489).

The 1911 soil map of Georgetown County (Figure 7) shows two structures next to the corridor. Only a few brick fragments were located in this area, but no standing structures remain.

The 1939 General Highway and Transportation Map of Georgetown County (Figure 8) shows Quail Farm along the corridor. The associated symbol indicates that this was a "game farm" although no additional information was found in the background research. No other structures were recorded in the project corridor.

Today most of the approximately forty
plantation that dotted the Waccamaw have or are being developed into residential areas for permanent or seasonal residents and into commercial districts to service these developments.
RESEARCH METHODS

Archaeological Field Methods

The initially proposed field techniques involved the placement of shovel tests at 100 foot intervals along the center line of the corridor, which will be 30 feet in width.

All soil would be screened through ½-inch mesh, with each test numbered sequentially. Each test would measure about 1 foot square and would normally be taken to a depth of at least 1 foot or until sterile subsoil was encountered. All cultural remains would be collected, except for mortar and brick, which would be quantitatively noted in the field and discarded. Notes would be maintained for profiles at any sites encountered. A total of 243 shovel tests were excavated along the corridor with an additional six shovel tests performed at the one identified site.

Should sites (defined by the presence of two or more artifacts from either surface survey or shovel tests within a 50 feet area) be identified, further tests would be used to obtain data on site boundaries, artifact quantity and diversity, site integrity, and temporal affiliation. These tests would be placed at 25 to 50 feet intervals in a simple cruciform pattern until two consecutive negative shovel tests were encountered. The information required for completion of South Carolina Institute of Archaeology and Anthropology site forms would be collected and photographs would be taken, if warranted in the opinion of the field investigators.

These proposed techniques were implemented with no significant modifications. As previously reported, the survey area contained areas of wetlands, mixed pines and hardwoods, and pine forests. The corridor had been surveyed and we were provided with a plan sheet of the proposed line.

Analysis of collections followed professionally accepted standards with a level of intensity suitable to the quantity and quality of the remains.

Figure 9. View of Arcadia Substation.
Site Evaluation

Sites will be evaluated for further work based on the eligibility criteria for the National Register of Historic Places. Chicora Foundation only provides an opinion of National Register eligibility and the final determination is made by the lead federal agency, in consultation with the State Historic Preservation Officer at the South Carolina Department of Archives and History.

The criteria for eligibility to the National Register of Historic Places is described by 36CFR60.4, which states:

- the quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and

a. that are associated with events that have made a significant contribution to the broad patterns of our history; or

b. that are associated with the lives of persons significant in our past; or

c. that embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

d. that have yielded, or may be likely to yield, information important in prehistory or history.

National Register Bulletin 36 (Townsend et al. 1993) provides an evaluative process that contains five steps for forming a clearly defined explicit rationale for either the site's eligibility or lack of eligibility. Briefly, these steps are:

- identification of the site's data sets or categories of archaeological information such as ceramics, lithics, subsistence remains, architectural remains, or sub-surface features;

- identification of the historic context applicable to the site, providing a framework for the evaluative process;

- identification of the important research questions the site might be able to address, given the data sets and the context;

- evaluation of the site's archaeological integrity to ensure that the data sets were sufficiently well preserved to address the research questions; and

- identification of important research questions among all of those which might be asked and answered at the site.

This approach, of course, has been developed for use documenting eligibility of sites being actually nominated to the National Register of Historic Places where the evaluative process must stand alone, with relatively little reference to other documentation and where typically only one site is being considered. As a result, some aspects of the evaluative process have been summarized, but we have tried to focus on each archaeological site's ability to address significant research topics within the context of its available data sets.

Laboratory Analysis

The cleaning and analysis of artifacts is
conducted in Columbia at the Chicora Foundation laboratories. The site forms for the identified archaeological site has been filed with the South Carolina Institute of Archaeology and Anthropology. Field notes have been prepared for curation using archival standards and will be transferred to the South Carolina Institute of Archaeology and Anthropology as soon as the project is complete.
RESULTS OF SURVEY

Introduction

The archaeological survey of the proposed transmission corridor revealed one site, 38GE564. This is a twentieth century farm area. It is recommended not eligible for the National Register.

Archaeological Resource

38GE564

Site 38GE564 (Figure 10) consists of a twentieth century Quail Farm. It is located in the plains at an elevation of about 20 feet AMSL. A central UTM coordinate for the site is 667299E 3696707N (NAD83 datum).

Shovel tests were completed at the proposed 100-foot intervals with one positive shovel test. Close interval testing was completed at 50-foot intervals along the proposed transmission line corridor (approximately northeast by southwest), but none of the six additional tests were positive.

Shovel tests produced Centenary fine sand which have an A1 horizon of grayish brown (10YR5/2) fine sand to a depth of 0.6 foot over a light yellowish brown (10YR6/4) fine sand to a depth of 1.5 feet.

The positive shovel test, situated among a newly developed hardwood and pine forest, produced one wire cut nail, which was discarded in the field. Also noted in the area was a wetland which had been intentionally dammed, two feeding troughs for birds with the name “PREMIER,” a set of spigots, and a wire fence around portions of the site.

The 1939 General Highway and Transportation Map of Georgetown County (Figure 12) shows this site as “Quail Farm,” but no earlier accounts of this farm are shown.

This site failed to produce the artifacts needed to address significant research questions. In addition, even with the intact features of the farm and relatively good integrity, it is unlikely this settlement will be distinct enough to warrant National Register eligibility.

This site is recommended not eligible for the National Register of Historic Places. No additional management activity is recommended pending review by the State Historic Preservation Office.
Figure 11. Sketch map and soil profile for the identified site.

Figure 12. 1939 map showing Quail Farm.
Figure 13. View of troughs in the site area.
CONCLUSIONS

This study involved the examination of 4.6 miles of corridor in eastern Georgetown County, South Carolina proposed for the use of a transmission line. This report, conducted for Mr. Eric McClanahan of S&ME, provides the results of that investigation and is intended to assist Santee Cooper comply with their historic preservation responsibilities.

As a result of this investigation one archaeological site, 38GE564, was identified within the study corridor. Site 38GE564 is a twentieth century farm and is recommended not eligible for the National Register of Historic Places.

The surrounding area is rapidly being developed, and only a few structures are near the project corridor.

It is possible that archaeological remains may be encountered in the area during construction. As always, the utility's contractors should be advised to report any discoveries of concentrations of artifacts (such as bottles, ceramics, or projectile points) or brick rubble to the project engineer, who should in turn report the material to the State Historic Preservation Office, or Chicora Foundation (the process of dealing with late discoveries is discussed in 36CFR800.13(b)(3)). No further land altering activities should take place in the vicinity of these discoveries until they have been examined by an archaeologist and, if necessary, have been processed according to 36CFR800.13(b)(3).
SOURCES CITED

1884 South Carolina in 1884: A View of the Industrial Life of the State. The News and Courier, Charleston, South Carolina.

CULTURAL RESOURCES SURVEY OF THE ARCADIA-DEBORDIEU 115kV TRANSMISSION LINE

Barry, John M. 1980 Natural Vegetation of South Carolina. University of South Carolina, Columbia.

Bridwell, Ronald E. 1982 "That We Should Have A Port": A History of the Port of Georgetown, South Carolina 1732-1865. Georgetown County Chamber of Commerce, Georgetown.

Devereaux, Anthony

Doar, David

Easterby, James H.

Espenshade, Christopher T. and Paul E. Brockington, Jr.

Espenshade, Christopher T., Linda K. Allan, and Paul E. Brockington, Jr.

Feild, Rachel

Ferguson, Leland G.

Fetters, Thomas

Goodyear, Albert C., John H. House, and Neal W. Ackerly

Gray, Lewis

Haag, William G.

Hacker, Debi and Michael Trinkley

Hanson, Glen T., Jr.

Huneycutt, Dwight J.
CULTURAL RESOURCES SURVEY OF THE ARCADIA-DEBORDIEU 115kV TRANSMISSION LINE

Kovacik, Charles F.

Kovacik, Charles F. and John J. Winberry

Lawson, Dennis T.
1972 "No Heir To Take Its Place." the Georgetown County Historical Commission, Georgetown, South Carolina.

Lefler, Hugh T., editor

Louis Berger Group, Inc.

Mathew, William M., editor

McGill, Samuel D.
1952 *Narrative of Reminiscences in Williamsburg County. Kingstree Lithographic Company, Kingstree, South Carolina.

McMakin, Todd and Eric C. Poplin

Michie, James L.
1977 *The Late Pleistocene Human Occupation of South Carolina*. Unpublished Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

Michie, James L. and Gary D. Crites
1991 "Charred Corn Cob Fragments from the Waccamaw River Area of Georgetown County, South Carolina." *South Carolina Antiquities*. Vol.23, No. 1 and 2. 46-49.

Mills, Robert
Noël Hume, Ivor

Oliver, Billy L.

Oliver, Billy L., Stephen R. Clagett, and Andrea Lee Novick

Penney, James T.

Perkins, Edwin J.

Phelps, David A.

Pitts, J.J.

Plummer, Gayther L.

Poplin, Eric C.

Price, Cynthia

Richards, Horace G.

Roberts, Wayne D.

Rogers, George C., Jr.

Rust, Tina M. and Eric C. Poplin
1994 Archaeological Survey and Testing of Selected Sites in the

Ryan, Thomas M.

Saas, Herbert Ravenel

Sandifer, Paul A., John V. Miglarese, Dale R. Calder, John J. Manzi, and Lee A. Barclay
1980 *Ecological Characterization of the Sea Island Coastal Region of South Carolina and Georgia*, vol. 3. Office of Biological Services, Fish and Wildlife Service, Washington, D.C.

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson
1990 *Native American Prehistory of the Middle Savannah River Valley*. Savannah River Archaeological Research Papers 1. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Sellers, Leila

Service, E.M.

Sharer, G. Terry

Smith, Henry A.M.
1913 *Baronies of South Carolina*. *South Carolina Historical Magazine* 14:61-80.

South, Stanley A.

Starr, Rebecca

Stoltman, James B.

Stuckey, Benjamin N.

Taylor, Richard L., editor
1984 *Cultural Resources Survey of the Proposed Pee Dee Electric Generating Facility in Florence County, South Carolina*. Commonwealth Associates,
Jackson, Michigan.

Tippett, J. Lee

Townsend, Jan, John H. Sprinkle, Jr., and John Knoepl

Trinkley, Michael

1980a *Additional Investigations at 38LX5.* South Carolina Department of Highways and Public Transportation, Columbia.

1985 *Archaeological Reconnaissance of the Proposed SC 51 Bridge Replacements over Smith Branch, Lanes Creek, and Six Mile Creek.* S.C. Department of Highways and Transportation, Columbia.

Trinkley, Michael and Debi Hacker

Trinkley, Michael and Nicole Southerland

Trinkley, Michael, Debi Hacker, and Natalie Adams

Vivian, Daniel J.

Voorhies, M.R.

Wallace, David D.

Walthall, John A.

1980 *Prehistoric Indians of the Southeast: Archaeology of*
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward, Trawick</td>
<td>The Archaeology of Whites Creek, Marlboro County, South Carolina. Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Postglacial and Interglacial Vegetation History of Southern Georgia and Central Florida. Ecology 52:666-690.</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetation Record for the Last 20,000 Years from a Small Marsh on Lookout Mountain, Northwestern Georgia. Geological Society of America</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Winberry, John J.
1979 Indigo in south Carolina: A
Historic Geography.
Southeastern Geographer 19.

Yohe, Robert M., II
1996 Analysis of Flaked Stone
Artifacts. In Archaeological
Laboratory Methods: An
Introduction, edited by Mark Q.
Sutton and Brooke S. Arkush,
pp. 39-68. Kendall/Hunt
Publishing, Dubuque, Iowa.