ARCHAEOLOGICAL RECONNAISSANCE OF THREE PROPOSED SCHOOL SITES IN GEORGETOWN COUNTY, SOUTH CAROLINA

Prepared By:
Rachel Campo

Prepared For:
Mr. Warren King
Southern Management Group
PO Box 2380
Georgetown, South Carolina 29440

Chicora Research Contribution 269

Chicora Foundation, Inc.
P.O. Box 8664 • 861 Arbutus Drive
Columbia, South Carolina 29202
803/787-6910
Email: Chicora@bellsouth.com

April 2, 1999

This report is printed on recycled, permanent paper.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>9</td>
</tr>
<tr>
<td>Physiographic Province</td>
<td>9</td>
</tr>
<tr>
<td>Climate</td>
<td>13</td>
</tr>
<tr>
<td>Floristics and Fauna</td>
<td>14</td>
</tr>
<tr>
<td>Prehistoric and Historic Overview</td>
<td>17</td>
</tr>
<tr>
<td>Previous Research</td>
<td>17</td>
</tr>
<tr>
<td>Prehistoric Overview</td>
<td>19</td>
</tr>
<tr>
<td>Historic Overview</td>
<td>20</td>
</tr>
<tr>
<td>Survey Methods and Findings</td>
<td>25</td>
</tr>
<tr>
<td>Methodology</td>
<td>25</td>
</tr>
<tr>
<td>Findings</td>
<td>28</td>
</tr>
<tr>
<td>Conclusions</td>
<td>33</td>
</tr>
<tr>
<td>Sources Cited</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Project area for Andrews High and Rosemary Middle Schools</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Project area for Beck Middle School</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Project area for Waccamaw Middle School</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Proposed tract for Andrews High and Rosemary Middle Schools</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Proposed tract for Beck Middle School</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Proposed tract for Waccamaw Middle School</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Location of project areas in Georgetown County</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>View of Andrews Middle and Rosemary Middle School tract</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>View of Beck Middle School tract</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>View of Waccamaw Middle School</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>View of bulldozing in Andrews Middle and Rosemary High School tracts</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>View of wetland area in Andrews Middle and Rosemary High School tracts</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Shovel testing in Andrews Middle and Rosemary High School tracts</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Bulldozer cuts in Beck Middle School tract</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Clear cut area in Waccamaw Middle School tract</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Location of isolated find in Waccamaw Middle School tract</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Map of isolated find 38GE00</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Overview of isolated find area</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

This study reports on a reconnaissance level archaeological survey of three proposed school sites located in Georgetown County: Andrews High School and Rosemary Middle School near West Andrews, South Carolina at the western edge of Georgetown County; Beck Middle School in the town of Georgetown in the middle of Georgetown County; and Waccamaw Middle School near of Beech at the eastern edge of Georgetown County.

The study was conducted at the request of the Southern Management Group in compliance with the Office of Cultural Resource Management permits which requires an archaeological evaluation as part of the land planning process. The current level of investigations is limited to an archaeological and historical reconnaissance in order to determine the probable nature of cultural resources on the study tract.

Our background research included contacting the South Carolina Department of Archives and History with a request for information concerning any National Register of Historic Places buildings, districts, structures, sites, or objects in the study area, as well as the results of any structures surveys which may have been completed in the study area. We have not receive a reply regarding the area of the proposed Andrews High School and Rosemary Middle School site. The Beck Middle School site does not contain any National Register sites, although Friend field Plantation, located near Georgetown, is a National Register site. At the proposed site for Waccamaw Middle School, there are no National Register sites in the immediate project area, although the Atalaya Plantation House just north of the project area is a National Register site. We also checked the master site files held by the South Carolina Institute of Archaeology and Anthropology for any previously recorded archaeological sites in the project area. Although a number of sites had been recorded for the surrounding area near Andrews Middle School to the northwest, no sites were known for the study tracts. In addition, we utilized our in-house documentation, Chicora’s previous cartographic survey of Georgetown County, to aid in identifying any historical sites in the three survey tracts. These studies identified major historic sites anticipated to be within 2,200 feet away from the survey tracts, but not located directly in the project areas.

Although only a reconnaissance level investigation was requested by the State Historic Preservation Office, the entire survey tracts were walked, with the exception of areas with standing water. Erosional or bare areas were examined, judgmental shovel tests were excavated and screened in areas of high archaeological probability, and additional judgmental shovel tests were excavated to verify soil conditions on the surface.

Our field investigations found that conditions at each proposed school tract varied greatly. At the tract for Andrews High and Rosemary Middle Schools, approximately a third of the tract was being clear cut and bulldozed. The remainder of the tract consisted of a wetland area with dense underbrush and mixed hardwoods, and an area of planted pines at a higher elevation than the surrounding area. Numerous road size bulldozer cuts had been made throughout the tract, providing 100% visibility of the ground surface. All of these cuts were pedestrian surveyed. Judgmental shovel tests were excavated in the high elevation area, which was expected to have a high potential for archaeological remains. The edges of the wetland area was pedestrian surveyed, although the wetland itself was not due to standing water. No archaeological materials were found in this tract.

The proposed site for Beck Middle School contained 50-100% visibility in all areas, making the tract suitable for a pedestrian survey. Although this tract did contain some pines and mixed hardwoods, the leaf litter was not so great as to block visibility. A number of bulldozer cuts provided great visibility. The entire tract was a low area and contained standing water in some areas. During the pedestrian survey, no areas with a high potential for archaeological remains, such as high elevations, ridges, or marsh edges, were
encountered. Likewise, no archaeological materials were recovered during the survey and for these reasons, shovel tests were not excavated.

At the proposed Waccamaw Middle School tract, we identified three types of areas which were surveyed: heavily wooded high elevations with a high potential for archaeological remains outside of direct impact for development; cleared areas with high elevations with a high potential for archaeological remains in the direct impact zone for development; and low wetland areas. Judgmental shovel tests were dug in those heavily wooded high areas with no ground visibility. The cleared areas which would be directly impacted by development were pedestrian surveyed, and judgmental shovel tests were dug near wetland areas and on the highest elevations. Wetland areas were pedestrian surveyed in areas that were accessible and did not contain standing water. One small prehistoric sherd was recovered from this tract (38GE00), but no other archaeological remains were recovered.

Based on these findings, we do not recommend any additional archaeological investigations, although this recommendation must be reviewed by the State Historic Preservation Office. In addition, it is always possible that unrecognized archaeological remains may be identified during construction. If so, the contractor should suspend work and notify either Chicora or the State Historic Preservation Office.
INTRODUCTION

The reconnaissance level investigation of the three proposed school tracts in Georgetown County was conducted by Rachel Campo and Todd Hejlik of Chicora Foundation, Inc. for Mr. Warren King of Southern Management Group. The three tracts include the area for Andrews High and Rosemary Middle Schools, located northwest of the town of Andrews (Figure 1), the area for Beck Middle School located in North Georgetown, and Waccamaw Middle School (Figure 2), located south of Brookgreen Gardens near Litchfield Beach (Figure 3).

The Andrews High and Rosemary Middle Schools tract is situated along US Highway 521, County Line Road 21, Gapway Road and Harper Road and covers 102 acres (Figure 4). During the survey, the southeastern portion of the tract was being cleared and bulldozed, prohibiting work in this area. The southeastern edge of the tract consisted of a low wetland with mixed hardwoods, dense underbrush and standing water. The remainder of the tract contained planted pines and a few areas of high elevation. Numerous bulldozer cuts throughout the tract enabled good visibility of the ground surface.

The Beck Middle School tract is situated between Georgetown High School and a large ditch and adjacent to the large IP canal (Figure 5). The tract is accessible via Anthuan Maybank Street. This tract consisted of pines and mixed hardwoods, but with very little leaf litter and good visibility of the ground surface. A number of bulldozer cuts throughout the survey tract permitted 100% visibility of the ground surface in these areas. The entire tract was low compared to the surrounding area and did not exhibit any areas with a high potential for archaeological remains.

The Waccamaw Middle School is located south of Brookgreen Gardens near Litchfield Beach (Figure 6). The tract consisted of heavily wooded high elevations, cleared areas on high elevations, and low wetland areas. Pines and mixed hardwoods comprised the majority of the vegetation in the forested areas. Leaf litter was very thick, restricting ground visibility. The cleared areas had good ground visibility, ranging from 50-75%.

The proposed work on each of these sites will include clearing, bulldozing, grading, excavating foundations, and erecting buildings in the direct impact areas. This work has the potential to damage or even destroy archaeological sites in the immediate vicinity. In some cases, construction was begun before the archaeological reconnaissance was undertaken, which may have destroyed any sites that were in these areas.

We were requested by Mr. Warren King of the Southern Management Group to submit a cost proposal for a reconnaissance level survey of the project on January 13, 1999. This proposal, submitted on January 20, 1999, was approved on January 29, 1999. These investigations incorporated a review of the site files at the South Carolina Institute of Archaeology and Anthropology by Ms. Suzanne Coyle, and Mr. Todd Hejlik on March 10 and 15, 1999. No previously recorded sites were recorded in or near the project area. In addition, Dr. Tracy Power at the South Carolina Department of Archives and History was asked on March 10, 1999 to check the master topographic maps at his office to locate any NRHP buildings, districts, structures, sites, or objects in the study. Dr. Power found a National Register property (Friendfield Plantation) in the general vicinity of the Beck Middle School tract. A National Register property (Atalaya Plantation) is located just north of the Waccamaw School site.

The survey, which was designed to identify prehistoric or historic resources which may be within the project areas, was conducted March 12, 15, and 16 by the author and Mr. Todd Hejlik. A total of fifty person hours were required for the study.
Figure 1. View of proposed tract for Andrews High and Rosemary Middle Schools (base map is USGS South Carolina 1:50,000).
Figure 2. View of proposed tract for Beck Middle School (base map is USGS South Carolina 1:50,000).
Figure 3. View of proposed tract for Waccamaw Middle School (base map is USGS South Carolina 1:50,000).
Figure 4. Proposed tract for Andrews High and Rosemary Middle Schools (base map is USGS Andrews quad 1:24,000).
Figure 5. Proposed tract for Beck Middle School (base map is USGS Georgetown North 1:24,000).
INTRODUCTION

Figure 6. Proposed tract for Waccamaw Middle School (base map is USGS Magnolia Beach 1:24,000).
NATURAL ENVIRONMENT

Physiographic Province

The project areas are situated in three areas in Georgetown County. The Andrews Middle and Rosemary High School tract is located on the western edge of Georgetown County. The Beck Middle School tract is situated in the middle of the county, and the Waccamaw Middle School tract is situated at the northeastern portion of the county, near the coast (Figure 7).

Georgetown County is situated in the northern lower coastal plain of South Carolina and is bounded on the east by about 37 miles of irregular Atlantic Ocean shoreline (including marsh and barrier islands such as Pawleys and Litchfield). The mainland topography consists of subtle undulations in the landscape characteristic of ridge and bay topography of beach ridge plains. Elevations in the county range from sea level to about 75 feet mean sea level (MSL) (Mathews et al. 1980:132).

The County is drained by five significant river systems, four of which (the Waccamaw, Black, Pee Dee, and Santee rivers) have significant freshwater discharge and only one of which (the Sampit River) is dominated by tidal action. Because of the low topography, however, many broad, low gradient interior drains are present as either extensions of tidal streams and rivers or flooded bays and swales. There are many diverse wetland communities influenced by either the freshwater drainage or tidal flows. Upland vegetation in the County is primarily pine or mixed hardwood and pine. Large areas of Georgetown County are in forest, with only 6.7% of the acreage being cultivated and 4.2% being urbanized (Mathews et al. 1980:132). The project areas are, in this sense, typical — being in planted pine and consisting of a relatively low swale area.

At the tract for Andrews High and Rosemary Middle Schools, approximately a third of the tract was being clear cut and bulldozed. The remainder of the tract consisted of a wetland area with dense underbrush and mixed hardwoods, and an area of planted pines at a higher elevation than the surrounding area. Elevations in the tract ranged from 26 feet above mean sea level (AMSL) in the wetland areas to 38 feet AMSL in the planted pines areas. Numerous road size bulldozer cuts had been made throughout the tract, providing 100% visibility of the ground surface (Figure 8).

The proposed site for Beck Middle School contained 50-100% visibility in all areas, despite wooded areas of pines and mixed hardwoods. Elevations in the tract range from 16 feet AMSL over much of the area to 19 feet AMSL at the eastern edge of the tract, creating a low area with pockets of standing water, especially in those areas of bulldozer cuts (Figure 9).

The Waccamaw Middle School tract was a heavily wooded tract with pines, mixed hardwoods, and intermittent areas of wetlands (Figure 10). Elevations ranged from 14 feet AMSL to 30 feet AMSL, creating a topography of small hills and low wet areas. The area slated for the construction of buildings has been clear cut, but no ground disturbing activities have taken place as of the survey. A number of historic roads wind through the project area and connect to roads outside of the project area, such as Sandy Island Road.

Geology and Soils

The geology of the county is characteristic of the coastal plain, with unconsolidated, water-laid beds of sands and clays overlying thick beds of soft marl. Each project area is characterized by the different soils and elevations.

The Andrews Middle and Rosemary High Schools tract is characterized by Bladen loam, Eulonia loamy fine sand, and Wahee fine sandy loam. Bladen
Figure 7. Location of project areas in Georgetown County (base map is USGS South Carolina, 1:50,000).
loam is a poorly drained soil found on the broad flats of the coastal plain. In general, it is characterized by a black (10YR2/1) loam A horizon overlying a dark gray (10YR4/1) clay. The water table occurs at 1.0-feet below the surface. Eulonia loamy fine sand is a moderately well drained soil that occurs on broad flats and along breaks to natural drainage ways. Eulonia is characterized by grayish brown (10YR5/2) loamy fine sand overlying yellowish brown (10YR5/6) clay. The water table occurs between 1.5 to 3.5 feet below the surface. Wahee fine sandy loam is a somewhat poorly drained soil found on the broad flats of the coastal plain. The water table generally occurs from 0.5 to 1.5 feet below the surface. The A horizon is a very dark gray (10YR3/1) fine sandy loam overlying a gray (10YR5/1) clay.

The Beck Middle School tract is characterized by Bladen loam and Yauhannah loamy fine sand. Both soils are found on broad flats throughout the Coastal Plain. Bladen loam, a poorly drained soil, has a black (10YR2/1) A horizon overlying a dark gray (10YR4/1) clay. Bladen loam has a seasonal water table in the upper foot of soil during the winter and spring (Stuckey et al. 1982:9). Yauhannah loamy fine sand, a moderately well drained soil, is characterized by an A horizon of very dark grayish brown (10YR3/2) loamy fine sand and yellowish brown (10YR5/4) loamy fine sand overlying a B horizon of brownish yellow (10YR6/6) sandy clay loam. The seasonal water table occurs between 1.5 to 2.5 feet below the surface during the winter and spring.

The Waccamaw Middle School tract is characterized by four soils: Leon sand, Centenary fine sand, Rutledge sand, and Lakeland fine sand. These soils vary from excessively drained to very poorly drained and have varying water tables. All soils occur on the Broad Flats of the Coastal Plain. Centenary fine sand is a moderately well drained soil with a water table of 3.5 to 5.0 feet below the surface (Stuckey 1982:12). This soil has an A horizon of fine sands of

![Figure 8. View of proposed tract for Andrews Middle and Rosemary High Schools.](image-url)
Figure 9. View of proposed tract for Beck Middle School.

Figure 10. View of proposed tract for Waccamaw Middle School.
NATURAL ENVIRONMENT

various colors, including yellowish brown (10YR5/2), light yellowish brown (10YR6/4), brownish yellow (10YR6/6), and light gray (10YR7/2). The B horizon is a dark reddish brown (5YR2/2) sand. Lakeland fine sand is an excessively drained soil with a water table at 1.0 feet below the surface throughout the year and is found mainly near rivers. The A horizon for Lakeland fine sand is a very dark grayish brown (10YR3/2), overlying a C horizon of yellowish brown (10YR3/4) fine sand. Leon sand is a poorly drained soil with a seasonal water table 1.0 foot below the surface during the winter and spring. The A horizon is a very dark gray (10YR3/2) sand overlying a gray (10YR5/1) sand. Rutledge sand is a very poorly drained soil with a seasonal water table 1.0 foot below the surface during the winter and spring. The A horizon is a black (10YR2/1) sand overlying a C horizon of dark gray (10YR6/1) and light gray (10YR6/1) sand.

Portions of all three tracts have recently been logged, likely increasing soil loss originating during earlier agricultural activities. The United States Forest Service has determined that logging accounts for upwards of 0.36 tons of soil erosion per acre per year in this region, while areas of skid trails have erosion rates of about 9.91 tons per acre per year (U.S. Department of Agriculture 1980:25).

Climate

Elevation, latitude, and distance from the coast work together to affect the climate of South Carolina. The climate of the Georgetown County area is influenced primarily by its southern latitude, proximity to the ocean, and low elevations, which result in a subtropical influence. The summers are long, hot, and humid, while the South Carolina mountains tend to serve as a barrier to cold air masses from the north and west, resulting in mild, dank winters (Hilliard 1984:13; Mathews et al. 1980:46).

The generally mild climate, as Hilliard (1984:13) notes, is largely responsible for the presence of many southern crops, such as cotton. Under normal conditions even corn, which requires 20 inches of precipitation during the growing season, thrives in the area (Wann 1977:183).

This environment, in spite of its potential agricultural productivity, was often seen as hostile, unhealthy, and even deadly to both blacks and whites alike. Joyner (1984:35-37) provides a brief review of nineteenth century observers, all of whom argue that the Low Country's "marsh miasma" was responsible for considerable sickness and death. Visitors frequently mentioned the stagnate air, noxious marsh gas, and abundant mosquitoes. Postell (1970:140-150) indicates that on one South Carolina rice plantation the 1859 figures show that there were 15 days lost from work per slave, compared to a southern mean of 12 days per slave. The Kollock Plantation, on Ossabaw Island, Georgia has a morbidity rate of 19.3 per 100 slaves and a Florida plantation averaged 21.3 days lost per slave in 1841.

Postell (1970:74-75) also notes that malaria and the various autumnal fevers were so chronic that there were only rarely mentioned in plantation records, although frequent remedies for "chills and fevers" found in planters' manuals testify to malaria's presence. Robert Pringle wrote in September 1739:

We have been Afflicted in this Town for these Two Months past with a great Sickness & Mortality by a Malignant Fever [apparently Yellow Fever], which has Carried off a great many People, but as the Season comes in now Pretty Cool, hope will be more healthful & that it will Please God to put a Stop to it (Edgar 1972:135).

In addition, the same climate that promoted the growth of rice, also made its preservation problematic. Pringle wrote in July 1742:

Rice at this time is never so Good in Quality as in the Cold Season by Reason it Growes Flowery & the Wevil & Worm is apt to gett into it. The Best time to Ship off Rice here, & when it is most plenty & best in Quality, is from the Month of
November till the month of May, after which month it is Generally scarce, high in price, & not Good (Edgar 1972:391).

Many other provisions, such as butter and even rum, also failed to withstand the hot Carolina climate according to Pringle (Edgar 1972:685, 694). Some items were even more troublesome, as Pringle noted in an April letter:

> Your Cocoa & Blubber still Remains on hand unsold, & as our hot Season now begins to Come in, the Blubber won't keep, so must be Oblig'd to expose it to Publik Venue. Pray never send any more of it (Edgar 1972:676).

Hilliard points out that "any description of climate in the South, however brief, would be incomplete without reference to a meteorological event frequently identified with the region -- the tropical hurricane" (Hilliard 1984:18). Hurricanes occur in the late summer and early fall, the period critical to antebellum cane, cotton, and rice growers. In the nineteenth century Ramsay observed:

> in such a case between the dread of pestilence in the city, of common fever in the country, and of an unexpected hurricane on the island, the inhabitants . . . are at the close of every warm season in a painful state of anxiety, not knowing what course to pursue, nor what is best to be done (Ramsay, quoted in Calhoun 1983:2).

From 1670 to 1860 there were 10 major hurricanes, occurring at intervals ranging from 2 to 52 years, several of which caused extensive reported crop damages (Mathews et al. 1980:54). Doar comments that:

> the heaviest and most destructive gale that the rice country has ever experienced . . . was in 1822, for it not only destroyed most if not all of the crops but a great many negro lives were lost . . . whole plantations were decimated in a few hours, and only those were saved who could get hold of a tree or floating debris (Doar 1936:22-23).

The September 27, 1822 hurricane is estimated to have killed 300 people, but it followed by only nine years the August 27, 1813 hurricane which was even more severe.

After these, Doar comments that some coastal rice planters began building "storm towers." Located in the rice fields:

> These were of brick, round, with conical roofs and were 20 or 30 feet in diameter and 20 feet high. About ten feet from the ground was an entrance to the floor at this height. Upon the approach of threatening weather all the hands were taken into them until the danger was over (Doar 1936:23).

Floristics and Fauna

The vascular flora of the upland ecosystem in the three areas is characterized by a mixed hardwood community. This community exhibits considerable diversity, but Kuchler (1964) suggests that the potential natural vegetation in the area is the Oak-Hickory-Pine forest containing medium tall to tall forests of broadleaf deciduous and needleleaf evergreen trees. The dominant trees are hickory, shortleaf pine, loblolly pine, white oak, and post oak. Other components would include dogwood, persimmon, sweetgum, and water tupelo. Such upland mixed hardwood forests have been selectively eliminated through logging and agriculture. The mixed hardwood forests provide excellent browse and cover for deer and even higher densities may be found in the edge zone between the upland zone and palustrine zone (Moore 1978:9). Other mammals frequently found in this
zone are squirrels, opossums, raccoons, and skunks. Less common species include the black bear, fox, and bobcat (Sandifer et al. 1980:473-478). The only terrestrial turtle found in any frequency in this environment is the Eastern box turtle, although freshwater turtles may occasionally be observed (Sandifer et al. 1980:457). The turkey is especially characteristic of mixed hardwood forests where mature oaks are common (Bevill 1978:42-43).

The riverine ecosystem is a significant factor in the project area's natural setting. The riverine ecosystem is based on waters with less than 0.5% ocean-derived salts and may be characterized as freshwater. The water velocity of the Waccamaw River fluctuates under tidal influence, the river has a low gradient, a mud bed, and a well developed floodplain. The mud riverbed is not conducive to the survival of shellfish, although some freshwater mussels such as *Elliptio* spp. may be found in the sandier areas. Approximately 24 fish species are common in the riverine system and six species of anadromous fish are found. The more important common species include catfish, largemouth bass, black crappie, white bass, and yellow perch. Also present are spotted sucker, carp, shiner, and longnose gar. The anadromous species include primarily shad, herring, striped bass, and sturgeon (Sandifer et al. 1980:411). Reptile species, including the river cooters, sliders, snapping turtles, and Florida cooters, are fairly common although most are found along the edges of the slower flowing streams in the palustrine ecosystem. Alligators are not uncommon today and may have been more common prior to extensive human pressure (Sandifer et al. 1980:419). Avifauna are relatively uncommon in many riverine ecosystems because the tidal range and weak flow. The highest number of birds coincide with the spring and fall migrations (Sandifer et al. 1980:420). The presence of a nearby palustrine ecosystem, however, probably attracts birds to the site area.

The palustrine ecosystem in the vicinity of the project areas, especially the Waccamaw Middle School tract includes several areas of tidal forested wetlands. These areas are dominated by oaks, sweetgums, cypress, and water tupelo with an abundant understory of swamp privet and wax myrtle (Sandifer et al. 1980:313). Adjacent tidal impoundments are the result of historic rice cultivation which areas of tidal emergent wetlands. These river marsh areas are dominated by brackish and freshwater plants such as giant cutgrass, wild rice, cat-tails, and saw grass. This ecosystem attracts a variety of mammals also found in the upland zone. As previously suggested, this environmental zone is the most ideally suited habitat for birds (Sandifer et al. 1980:375). Possibly significant birds during the antebellum period would include species such as the work stork, egret, ibis, and heron, and the ducks, primarily the wood duck. Turtles are abundant.

The estuarine area is highly productive and provides an environment for a number of fish in tidal creeks. These fish may be divided into two groups. Fish such as the flounder, drum, catfish, and gar represent large predators which are found at the mouths of intertidal creeks. These fish feed on the second group, such as the mullet, spot, Atlantic menhaden, and silver perch, which commonly travel in schools and migrate in and out of the intertidal creeks with the tide (Cain 1973:76-77). While few turtles are found in the estuarine area, birds are fairly common, particularly in the area of the emergent wetlands.
PREHISTORIC AND HISTORIC OVERVIEW

Previous Research

Although considerable prehistoric research has been conducted along the central and southern coast of South Carolina (see Anderson and Logan 1981; Trinkley 1980a; Trinkley 1990a and 1990b) very little research has focused on the coast north of the Santee River. The earliest published work from the area is Carl Miller's (1950) brief study of 884 sherds from nine sites in the vicinity of Myrtle Beach, Horry County. All of these sites were situated on small sandy ridges overlooking Long Bay and evidenced only light scatters of shell and pottery. A brief re-examination of the collections from one of Miller's sites (H01) in 1979 resulted in the identification of probable Deep Creek and Hanover wares.

Waldemar H. Ritter, from the Charleston Museum, was collecting from sites in the Georgetown area as early as 1933. Sites were found at Pawleys Island and on the Baruch property at Waccamaw Neck, but the descriptions are insufficient to allow the sites to be identified today.

Stanley South (1960a), reporting on a survey of southeastern coastal North Carolina and the northeast coast of South Carolina, offered type descriptions for the Thom’s Creek, Cape Fear, Hanover, and Oak Island series. South’s sites were found adjacent to the estuary, in similar environmental contexts as reported by Miller (1950). These findings were largely supported by his survey of Alder’s and Russell’s islands in the White Oak River in Onslow County, North Carolina (South 1960b).

South (1962) also examined a probable Middle Woodland sand burial mound in Brunswick County, North Carolina (see also Wilson 1982). The mound, formed by the covering of secondary deposits of cremated remains, contained few artifacts but is part of a widespread burial mound tradition found along the coasts of North and South Carolina, and Georgia (see Brooks et al. 1989; Larsen and Thomas 1982; Rathbun 1985).

Between 1963 and 1965 additional, largely unreported, work was being conducted in Georgetown and Horry counties by the South Carolina Institute of Archaeology and Anthropology (Dr. William Edwards) and students from the University of South Carolina-Coastal Carolina campus. Information on this work has been gathered together by Erika Fogg-Amed (1980). As a result of this work, Fogg-Amed (1980) developed a sequence from the Paleoindian though the late Pee Dee.

Following South’s 1960 survey and typological assessment of coastal pottery, work by Crawford (1966) and later by Loftfield (1976) continued to emphasize the North Carolina coast. While these studies tended to develop more or less local typologies, work in the late 1970s by David Phelps began to synthesize the North Carolina coastal typologies (Phelps 1978, 1980, 1981, 1982, 1984). One of the most important contributions of this work was the recognition that South’s “Cape Fear” series actually represented at least two Early and Middle Woodland series lumped together. The application of much of this North Carolina sequence to the South Carolina coast is discussed by Trinkley (1983).

Recent work at Minim Island (Espenshade and Brockington 1989) explored an Early Woodland site evidenced by Thom’s Creek, Refuge, Deptford, and Deep Creek pottery. Subsistence studies indicated seasonal use of the site with an emphasis on fishing and oyster gathering.

Most sites, based on these previous studies, are found on excessively to well drained soils, although a few are consistently found in areas which are poorly drained (which suggests that factors other than drainage may occasionally have determined aboriginal settlement locations). Also, work at 38GE377 (Adams
ARCHAEOLOGICAL RECONNAISSANCE SURVEY OF THREE GEORGETOWN SCHOOLS

1993) suggests that prehistoric sites are often located on major sand ridges overlooking wetlands.

Work by South and Hartley (1980) suggests that major historic site complexes will be found on high ground adjacent to a deep water access. Plantation main house tend to be located on the highest and best drained soils, while slave settlements may be found intermediate or even poorly drained areas. Both settlement types, however, tend to be in close proximity to the rice fields. Extractive or milling sites will be located near necessary raw materials and where the products can be easily transported in and out. Healthful conditions and drainage are not usually significant considerations.

Historical archaeological research in Georgetown County consists primarily of all levels of work at plantations along Waccamaw Neck. The testing and data recovery investigations include work at Richmond Hill Plantation (Michie 1987, 1988, and 1990; Michie and Mills 1988), The Oaks and Laurel Hill Plantations (Drucker 1980), Campfield Plantation (Zierden and Calhoun 1983), Willbrook, Oatland, and Turkey Hill Plantations (Trinkley 1987; Trinkley 1993), and Midway Plantation (Smith 1986). Information from these works have been synthesized by Trinkley (1993) and should be consulted for further information.

In 1993 Chicora Foundation used a variety of cartographic resources to identify potential archaeological and historical resources in Georgetown County. Funded by a National Park Service Survey and Planning Grant (administered by the S.C. Department of Archives and History), with additional funding by the City of Georgetown, Georgetown County, the Waccamaw Regional Planning Council, and the S.C. Coastal Council, this study resulted in the identification of 810 potential historical sites (Hacker and Trinkley 1993).

The cartographic study conducted by Hacker and Trinkley (1993) for Georgetown County suggests the possibility of a number of historic sites located near the study tracts, but not located directly within these tracts. None of these historic structures were located directly within the study tracts, and no standing structures or evidence of historic remains were recovered during the surveys.

At the Andrews Middle and Rosemary High Schools tract, five proposed sites are located within 2,000 feet of the project area. The 1910 USDA Soil Conservation Service Map shows two possible sites near the project area, including two buildings and a row of seven buildings 800 feet southwest of the study tract, and a cluster of six buildings 2,000 feet north of the project area. The 1938-1939 South Carolina Department of Archives and History Georgetown Timber Map shows a dwelling, two farm units and a tenant house 600 feet east of the study area. The Georgetown County Highway Map from 1939 shows a number of structures located approximately 2,000 feet northeast and southeast of the study tract. Located northeast of the project area, a farm unit, a vacant business establishment, three farm units and 155 tenant houses are shown on the map. Southeast of the project area the town of Andrews is shown on the map encompassing a number of structures and buildings. Mill's Atlas from 1825 also shows the Lester settlement located 2,000 feet southeast of the tract.

Only one group of structures is shown on historic maps in the vicinity of the Beck Middle School tract. These structures, shown on the 1882 McCrady Plat 2006, include a "negro settlement" on Richmond Plantation approximately 4,000 feet northeast of the study tract.

In the vicinity of the Waccamaw Middle School tract, the 1911 USDA Soil Conservation Service map shows a row of three buildings located directly northeast of the project area.

Dr. Tracy Power of the South Carolina Department of Archives and History (personal communication 1999) reports that there are no National Register buildings, districts, structures, sites, or objects directly in the survey areas. However, there are two National Register properties located near the proposed tract for Beck Middle School and Waccamaw Middle School. Near Beck Middle School, in the south portion of Georgetown, Friend field Plantation is listed on the National Register of Historic Places.
PREHISTORIC AND HISTORIC OVERVIEW

The Atalaya Plantation house is located just north of the proposed Waccamaw Middle School tract and is also listed on the National Register of Historic Places. In addition, no archaeological sites are recorded at the South Carolina Institute of Archaeology and Anthropology for the three general areas of this study.

Prehistoric Overview

The Paleoindian period, lasting from 12,000 to 8,000 B.C., is evidenced by basally thinned, side-notched projectile points; fluted, lanceolate projectile points; side scrapers; end scrapers; and drills (Coe 1964; Michie 1977). The Paleoindian occupation, while widespread, does not appear to have been intensive. Points usually associated with this period include the Clovis and several variants, Suwannee, Simpson, and Dalton (Goodyear et al. 1989).

At least three Paleoindian projectile point has been found in Georgetown County which were found adjacent to rivers and major tributaries (Charles 1986:16). This pattern of artifacts found along major river drainages has been interpreted by Michie to support the concept of an economy "oriented towards the exploitation of now extinct mega-fauna" (Michie 1977:124). Unfortunately, little is known about Paleoindian subsistence strategies, settlement systems, or social organization. Generally, archaeologists agree that the Paleoindian groups were at a band level of society, were nomadic, and were both hunters and foragers. While population density, based on the isolated finds, is thought to have been low, Walthall suggests that toward the end of the period, "there was an increase in population density and in territoriality and that a number of new resource areas were beginning to be exploited" (Walthall 1980:30).

The Archaic period, which dates from 8000 to 2000 B.C., does not form a sharp break with the Paleoindian period, but is a slow transition characterized by a modern climate and an increase in the diversity of material culture. Archaic period assemblages, characterized by corner-notched, side-notched, and broad stemmed projectile points, are common in the vicinity, although they rarely are found in good, well-preserved contexts.

The Woodland period begins, by at least one definition, with the introduction of fired clay pottery about 2000 B.C. along the South Carolina coast and much later in the Carolina Piedmont, about 500 B.C. It should be noted that many researchers call the period from about 2500 to 1000 B.C. the Late Archaic because of a perceived continuation of the Archaic lifestyle in spite of the manufacture of pottery. Regardless of terminology, the period from 2000 to 500 B.C. was a period of tremendous change.

The subsistence economy during this early period was based primarily on deer hunting and fishing, with supplemental inclusions of small mammals, birds, reptiles, and shellfish. Various calculations of the probable yield of deer, fish, and other food sources identified from some coastal sites indicate that sedentary life was not only possible, but probable. Further inland it seems likely that many Native American groups continued the previous established patterns of band mobility. These frequent moves would allow the groups to take advantage of various seasonal resources, such as shad and sturgeon in the spring, nut masts in the fall, and turkeys during the winter.

The South Appalachian Mississippian period, from about A.D. 1100 to 1640 is the most elaborate level of culture attained by the native inhabitants and is followed by cultural disintegration brought about largely by European disease. The period is characterized by complicated stamped pottery, complex social organization, agriculture, and the construction of temple mounds and ceremonial centers.

There is minimal archaeological evidence for historic Indian occupation along the Waccamaw River. The only known historic Indian site investigated is Wachesaw Landing, located about 17 miles north of the city of Georgetown associated with the historic Waccamaw Indian. Historic trade beads and copper or brass items were found in addition to two flexed burials (Trinkle et al. 1983).
Historic Overview

The first white settlers were drawn to the Waccamaw Neck area around Winyah Bay by the lure of lucrative Indian trade. The English, Scots, and French acquired land through proprietary and royal land grants, beginning as early as 1705. However, the majority of lands were granted in the 1730s (Rogers 1970:12, 20, 26). Access to water was an important factor in land development. The earliest policy was to grant narrow river frontage in order to give more settlers river access. Among the first grantees was Percival Pawley, who, through a series of land grants, obtained 24,000 acres on the Pee Dee, Sampit, and Waccamaw rivers in 1711 (Rogers: 1970:16-21).

Indigo was one of the area's first major crops, but had a relatively short life of less than 50 years. Production, which began in the 1740s and reached its peak from 1754-1760, was artificially stimulated by an English bounty and King George's War (1739-1749) which cut off England's supplies in the French and Spanish West Indies. The crop grew particularly well along the Pee Dee, Black, and lower Waccamaw rivers. The processing of indigo required settling through a series of vats which drew flies and mosquitoes rendering it a fairly offensive labor (Kovacik and Winberry 1987:75). One 1755 account mentions:

indigo has a very disagreeable smell, while making and curing; and the foeces, when taken out of the steeper, if not immediately buried in the ground (for which it is excellent manure, breeds incredible swarms of flies (Carman 1939:281-290).

Unfortunately, indigo was "one of those rank weeds like tobacco, which not only exhaust the substance of the earth, but require the very best and richest lands" (Carman 1939:281-290).

In 1753 the Winyah Indigo Society was officially organized and named Thomas Lynch, Sr. their first president. This group established a free school, a library, and functioned as a business and social club for members. By the end of the eighteenth century, planters along the Waccamaw, as elsewhere, had abandoned indigo due to a market surplus and a devastation of caterpillars (Winberry 1979:92, 98; Lawson 1972:3-4; see also Huneycutt 1949).

The early economy also depended on navel stores, and to a lesser extend, on salt processing. In 1733 exports from the port of Georgetown included 7,361 barrels of pitch, 1,092 barrels of tar, and 1,926 barrels of turpentine (Bridwell 1982:12; Rogers 1970:46-47). In the mid-1700s shipbuilding was an important Georgetown industry. Bridwell notes that there is evidence of shipbuilding as early 1738 and that by the late 1740s an active industry flourished in the Winyah Bay area (Bridwell 1982:14). By the mid-1750s this industry began to decline as other enterprises developed and the supply of shipwrights declined (Bridwell 1982:16).

Another crop was to have a more enduring and extensive effect on the economic and cultural life of the Waccamaw. Tidal rice culture began here in the 1730s and became the lifeblood of the Waccamaw until the slave system upon which it depended was ended by the Civil War.
George C. Rogers, in his study, *The History of Georgetown County*, attributes the rise of rice production in the area to four factors: rice cultivation had already been successfully developed in the province, a stable slave labor supply existed, land titles were stable and allowed for the accumulation of large tracts of property, and there were men who were ready to exploit this potential.

Georgetown District was the nation's major rice-growing area. In 1826 Robert Mills observed that in Georgetown:

> everything is fed on rice, horses and cattle eat the straw and hogs, fowls, etc. are sustained by the refuse, and man subsists upon the marrow of the grain The most valuable lands in the district are those called the tide lands The yield of these lands is immense . . . they average three barrels or 2000 pounds to the acre (Mills 1972 [1826]:558).

The early history of rice is discussed by Clowse (1971:125-132) and Doar (1936). Although the records of rice exportation are vague, they do indicate that production increased dramatically after 1705 (see Clowse 1971:167-168 for additional discussion). In the late Colonial period rice profitability also increased. Perkins observes that:

> yields were from 2 to 4 barrels per acre, and most plantations had 2 or 3 acres under cultivation for each field hand. Based on an average price of £2.3 ($150) per barrel from 1768 to 1772, slaves generated revenues annually of from £9.2 up to £27.6 ($600-$1,800), with around £15 ($975) probably the average figure (Perkins 1980:58).

Although most of the rice production figures are developed from shipping out of Charleston, Bridwell mentions that 322 barrels of rice were shipped out of Georgetown itself in 1733 (Bridwell 1982:12). In 1731, the closest year for comparison, 48,238 barrels of rice were shipped from Charleston (Clowse 1971:Table III). The low figure for the Georgetown port is probably the result of rice being shipped from Georgetown to Charleston by small coasting vessels, with the information not included in the official shipping totals.

In 1840 Georgetown District produced 45 percent of the national rice crop. Between 1850 and 1860, production peaked. In 1850, 46,765,040 pounds of rice were produced in Georgetown County. By 1860, South Carolina produced nearly 64 percent of the total United States rice crop and one-half of the state's crop was grown in Georgetown District. The average yield on Georgetown plantations in 1860 was 1,568 lbs. per acre. Prices ranged from 2.0 to 4.3 cents per pound in the 1850s (Easterby 1945:36; Kovacik 1979:49).

Profits on rice plantations during the nineteenth century were variable. Governor Robert Francis Withers Allston reported in 1854 that "the profits of a rice plantation of good size and locality are about 8 percent per annum, independent of the privileges and perquisites of the plantation residence" (Easterby 1945:37). Peter Coclanis (1989:134-141) argues that while the annual net rate of return on rice cultivation was around 25 percent in the 1760s, it fell to an astounding -28 percent by 1859. Regardless, the plantation system was run almost entirely on credit, paying off each past year's indebtedness with the sale of the new crop. Although the Georgetown rice economy was in a healthy, expanding condition in the antebellum years, the planter's capital was constantly being invested in land and slaves (Sellers 1934:55-56). R.F.W. Allston was one of the district's leading slave owners with nine plantation totalling over 6,000 acres.

Although most of the rice production figures are developed from shipping out of Charleston, Bridwell mentions that 322 barrels of rice were shipped out of Georgetown itself in 1733 (Bridwell 1982:12). In 1731, the closest year for comparison, 48,238 barrels of rice were shipped from Charleston (Clowse 1971:Table III). The low figure for the Georgetown port is probably the result of rice being shipped from Georgetown to Charleston by small coasting vessels, with the information not included in the official shipping totals.

In 1840 Georgetown District produced 45 percent of the national rice crop. Between 1850 and 1860, production peaked. In 1850, 46,765,040 pounds of rice were produced in Georgetown County. By 1860, South Carolina produced nearly 64 percent of the total United States rice crop and one-half of the state's crop was grown in Georgetown District. The average yield on Georgetown plantations in 1860 was 1,568 lbs. per acre. Prices ranged from 2.0 to 4.3 cents per pound in the 1850s (Easterby 1945:36; Kovacik 1979:49).

Profits on rice plantations during the nineteenth century were variable. Governor Robert Francis Withers Allston reported in 1854 that "the profits of a rice plantation of good size and locality are about 8 percent per annum, independent of the privileges and perquisites of the plantation residence" (Easterby 1945:37). Peter Coclanis (1989:134-141) argues that while the annual net rate of return on rice cultivation was around 25 percent in the 1760s, it fell to an astounding -28 percent by 1859. Regardless, the plantation system was run almost entirely on credit, paying off each past year's indebtedness with the sale of the new crop. Although the Georgetown rice economy was in a healthy, expanding condition in the antebellum years, the planter's capital was constantly being invested in land and slaves (Sellers 1934:55-56). R.F.W. Allston was one of the district's leading slave owners with nine plantation totalling over 6,000 acres. However, in 1859, he replied to the Blue Ridge Railroad Commission that he was unable to invest in the railroad:

> I have no funds to invest. All that I am worth lies in South Carolina and is invested in land and negroes; the annual income from which is pledged before it is realized (Easterby 1945:162).
Large plantations were the rule. The demand for the limited prime coastal lands forced up land values and pushed out marginal planters. By the early 1800s a hierarchy had developed based upon distance from the sea. By 1850, 99 large planters (planters who harvested more than 100,000 pounds each) produced 98% of the District's total rice crop (Rogers 1970:253; Lawson 1972:8).

Because of this reliance on slave labor, Georgetown District had the highest percentage of slaves in South Carolina. From 1810 to 1850, slaves made up 88% of the District's total population and accounted for 85% of the population in 1860 (Rogers 1970:328, 343).

The planters of Waccamaw Neck were a small aristocratic group, closely knit by ties of blood as well as common interest. They were rich, even by standards of most of South Carolina's planters, and lived in a luxurious style. In 1839 planters along the Waccamaw, the Pee Dee, the Black, the Sampit, and Winyah Bay formed the Planters Club on the Pee Dee. In 1845 the men formed another organization, the Hot and Hot Fish Club, for "convivial and social intercourse" (Rogers 1970:228, 196).

The Civil War devastated Georgetown's economy. One popular journal stated, "no other part of the United States knows so well as the Rice Coast what defeat in war can mean, for nowhere else in this country has a full-blown and highly developed civilization perished so completely" (Saas 1941:108). Perhaps no area of the state suffered more economic and social damage than All Saints Parish.

Minimal documentation is available concerning the activities of the Waccamaw plantation freedmen following the war. There were some cases of looting and pillaging of the plantation homes, the "buckra houses." At first, some freedmen stayed on the confiscated plantations and worked under supervision of the Freedmen's Bureau. After restoration of the plantations, they signed work agreements with their former masters or other plantation owners whereby they were paid a set fee at the end of the planting season. Others turned from the rice fields to the burgeoning Georgetown timber industry for work. The majority of former slaves, it appears, remained on Waccamaw Neck. Here they could find ready food in the river and sea, and were among old friends and family. Too, the geographic isolation of the Neck may have reduced the travel incentive. Elsewhere small villages of freedmen apparently were formed, with the Moyd settlement on Pennyroyal Road perhaps one example. Travel to Charleston, difficult and somewhat dangerous, required a boat and/or several ferry crossings (Lawson 1972:23; Genevieve Chandler Peterkin, personal communication, 1987; R.F.W. Allston Family Papers, South Caroliniana Library; see also the Freedmen's Bureau Reports for Georgetown County, South Carolina Department of Archives and History).

The blockade and occupation of Georgetown in 1862 threatened the plantation system. Union troops seized rice as contraband and set fire to rice fields as they went up the Waccamaw. Some planters continued trying to grow crops, but an estimated 75 percent of the county's plantation families moved to the interior of the state. The war was followed by successive crop failures in 1865, 1866, and 1867. Between 1860 and 1870, South Carolina's rice production fell nearly 73 percent. In Georgetown County, the 1879 crop was approximately 10% of the 1860 crop (Kovacik 1979:55). Financing next year's crop became a critical concern for planters who had traditionally depended on their factors for this service.

During this period, a number of things happened to land ownership: bankruptcies were common, the Freedmen's Bureau confiscated some lands and resettled former slaves on them, and other lands were sold at auction for nonpayment of loans or taxes. Companies such as Lachicotte and Sons and the Guendalos Company tried to profitably combine planting and rice milling to reduce operational costs. Efforts such as these managed to keep the rice industry alive until the turn of the century.

By the late nineteenth century Northern investors were buying up the old Waccamaw rice plantations. Having little, if any, interest in rice cultivation, many of these buyers used the plantations as game preserves for sport hunting. The loss of a stable and experienced work force, the competition from western rice lands, and finally the hurricanes of
1893, 1894, 1898, 1906, 1910, and 1911 that wrecked the dike system, ended the long history of rice production on the Georgetown rivers (Devereaux 1976:254-255; Lawson 1972:22-23, 409; Smith 1913:80). Elizabeth Allston Pringle of Chicora Wood wrote in 1906:

I fear the storm drops a dramatic, I may say tragic, curtain on my career as a rice planter. The rice plantation, which for years gave me the exhilaration of making a good income myself, is a thing of the past now -- the banks and trunks have been washed away, and there is no money to replace them (Rogers 1970:488-489).

Today most of the approximately forty plantations that dotted the Waccamaw have or are being developed into residential areas for permanent or seasonal residents and into commercial districts to service these developments.
SURVEY METHODS AND FINDINGS

Methodology

The initially proposed field techniques involved the placement of judgmental shovel tests in areas of high archaeological site probability, such as on ridge crests, ridge saddles, and other level areas near drainages. The placement of shovel tests at each project area is discussed below. In addition, occasional shovel tests would also be excavated to evaluate soil erosion. All fill would be screened through % inch mesh, with each test numbered sequentially. Each test would measure about 1 foot square and would normally be taken to a depth of at least 1 foot. All cultural remains would be collected, except for mortar and brick, which would be quantitatively noted in the field and discarded. Notes would be maintained for profiles at any sites encountered.

Should sites (identified as three or more artifacts within a 25 foot diameter) be identified by either the judgmental shovel testing or pedestrian survey, the location would be recorded and the information required for completion of South Carolina Institute of Archaeology and Anthropology site forms would be collected and photographs would be taken, if warranted in the opinion of the field investigator. No further tests, however, would be conducted since this was only a reconnaissance level investigation and it would not be possible to assess the National Register eligibility of sites identified.

Andrews Middle and Rosemary High Schools Tract

Upon arriving at the project area, we discovered that approximately one-third of the tract (the southeast portion) was being clear cut and bulldozed (Figure 11). This area was not surveyed due to the use of heavy machinery. The remainder of the tract consisted of areas of high visibility (more than 50%), bulldozer cuts, wetland areas (Figure 12), and areas with low visibility. All areas were pedestrian surveyed, including the bulldozer cuts. Shovel tests were excavated in those areas with poor ground visibility and a high potential for archaeological sites, which included a high elevation ridge planted in pines (Figure 13). Areas along the wetlands were not shovel tested due to good ground visibility. No archaeological remains were encountered during this survey.

Beck Middle School Tract

The Beck Middle School tract is bounded by a high school to the south, a large man-made ditch to the north, a man-made canal to the west, and Anthuan Maybank Street to the east. The tract is very low and contains sparse pines and mixed hardwoods. This topography did not exhibit any areas of high potential for archaeological site, such as ridges, marsh edges, or high elevations. Ground visibility over the tract ranged from 50 to 100% visibility, and was made more accessible due to the number of bulldozer cuts throughout the tract (Figure 14). Due to the good ground visibility and the low probability for archaeological sites in this type of topography, no shovel tests were excavated. The entire tract was pedestrian surveyed, but no archaeological resources were encountered.

Waccamaw Middle School Tract

The Waccamaw Middle School Tract is located near Brookgreen Gardens. This tract was divided into three different areas for the purpose of executing a reconnaissance survey: heavily wooded high elevations with a high potential for archaeological remains outside of direct impact for development; cleared high elevations areas with a high potential for archaeological remains in the direct impact zone for development (Figure 15); and low wetland areas. Judgmental shovel tests were dug in those heavily wooded high areas with no ground visibility, and in heavily wooded areas along marsh
Figure 11. View of southeast portion of bulldozing in the Andrews Middle and Rosemary High Schools tract.

Figure 12. View of wetland area in the Andrews Middle and Rosemary High Schools tract.
Figure 13. Shovel testing in an area of planted pines in the Andrews Middle and Rosemary High Schools tract.

Figure 14. View of bulldozer cuts in the Beck Middle School tract.
edges. The cleared areas which would be directly impacted by development were pedestrian surveyed, and judgmental shovel tests were dug near wetland areas and on the highest elevations in these cleared areas. Wetlands were pedestrian surveyed in areas that were accessible and did not contain standing water. This reconnaissance survey recovered one prehistoric sherd, given site number 38GEO00.

Findings

These investigations revealed that the project areas were in various states of development, which affected the possibility of recovering archaeological resources. Each project area is discussed below.

Andrews Middle and Rosemary High School Tracts

During the reconnaissance survey of this tract, approximately one third of the project area (the southeastern portion) was in the process of being clear cut and bulldozed. These ground disturbing activities adversely affect the possibility of recovering archaeological resources.

Judgmental shovel tests revealed that this area has likely suffered erosion, as no A horizon soils were found in a number of the shovel tests. This depletion of the soil can probably be attributed to the use of the area for pine plantation. No archaeological resources were identified during pedestrian survey or judgmental shovel testing.

Beck Middle School Tract

The Beck Middle School tract contained a number of recent bulldozer cuts which enabled good ground visibility throughout the tract.

The pedestrian survey in this tract did not identify any archaeological resources. Due to the low topography of the tract, and hence a low potential for archaeological sites, no judgmental shovel tests were excavated. However, a few shovel tests were dug to confirm the soils in the area. These shovel tests
demonstrate that the area contains intact A horizons and does not seem to have been subjected to much erosion, other than that associated with the recent bulldozer cuts. No historic or prehistoric remains were encountered during this survey.

Waccamaw Middle School Tract

At the Waccamaw Middle School tract, areas slated for development have been clear cut, but ground disturbing activities had not yet taken place at the time of the survey. Other areas not in the direct impact zone have not been clear cut and in general are heavily wooded.

Shovel testing in clear cut areas in the direct impact zone revealed that the soils have been depleted, resulting in the loss of an A horizon. Further pedestrian survey in this portion of the tract did not reveal any archaeological remains.

Shovel testing on a heavily wooded elongated ridge, outside of the direct impact for construction, produced one prehistoric sherd at the west edge of the ridge (Figures 16). Further testing at 25-foot intervals in cardinal directions did not produce any other prehistoric or historic remains (Figure 17). This isolated find was given site number 38GE001. The

The South Carolina Department of Archives and History has determined that a site consists of 3 or more artifacts in a 25-foot area. For this reason, the sherd is not considered a site, but an isolated find.
Figure 17. Map of isolated find 38GE00 in Waccamaw Middle School tract.

Figure 18. Overview of isolated find 38GE00 in Waccamaw Middle School tract.
central UTM coordinates for this isolated find are N3707300 E677350. It is situated 800 feet east of Highway 17, and approximately 700 feet north of Sandy Island Road. The isolated find area was covered in pine needles and leaf litter, providing very poor ground visibility (less than 25%) and could not be effectively pedestrian surveyed. The area was forested with pines and hardwoods (Figure 18). Soils in this area are Leon sands, and shovel tests revealed that the soils conform to the generalized description provided by Stuckey (1982:50).

Pedestrian survey and judgmental shovel testing in areas adjacent to marsh edges revealed no other prehistoric or historic remains in this survey tract.
CONCLUSIONS AND RECOMMENDATIONS

The archaeological survey combined pedestrian survey with judgmental shovel testing. Each project area was in a different phase of development. The Andrews Middle and Rosemary High Schools tract was in the process of being clear cut and bulldozed. The Beck Middle School tract had numerous bulldozer cuts throughout the tract. The Waccamaw Middle School tract was clear cut in areas slated for the construction of buildings.

One archaeological isolated find was identified in the Waccamaw Middle School tract. No other archaeological remains were identified in the remainder of the Waccamaw tract, the Beck Middle School tract, or the Andrews Middle and Rosemary High School tract, although not all areas were subjected to intensive shovel testing.

This reconnaissance level investigation found little evidence of archaeological remains in the immediate area. Consequently, it is our recommendation that no additional survey is necessary for any of these tracts, pending the review and concurrence of the S.C. State Historic Preservation Office.

There remains, of course, the possibility that unrecorded archaeological sites may be identified during the construction of the project. While unlikely, sites might be identified by concentrations of bricks, bottles, pottery, ceramics, arrowheads or other stone tools, flakes, or even bones. Should such remains be found, it is our recommendation that construction be halted and that either Chicora or the State Historic Preservation Office be notified of the finds. This will allow a more complete evaluation.
Sources Cited

Adams, Natalie

Anderson, David G. and Trish Logan

Bevill, Vernon

Bridwell, Ronald E.
1982 "That We Should Have A Port": A History of the Port of Georgetown, South Carolina 1732-1865. Georgetown County Chamber of Commerce, Georgetown.

Brooks, Mark, D.J. Colquhoun, J.G. Brown, and P.A. Stone

Cain, Ronald L.
1973 The Annual Occurrence, Abundance and Diversity of Fishes in an Intertidal Creek. Unpublished M.S. thesis, Department of Biology, University of South Carolina, Columbia.

Callhoun, Jeanne A.

Carman, Harry J., editor

Charles, Tommy

Clowse, Converse D.

Coclanis, Peter A.

Coe, Joffre L.
Crawford, Robert G.

Devereaux, Anthony

Doar, David

Drucker, Lesley

Easterby, James H.

Edgar, Walter B.

Espenshade, Christopher T. and Paul E. Brockington, Jr.

Fogg-Amed, Erika

Goodyear, Albert C., III, James L. Michie, and Tommy Charles

Gray, Lewis
1933 History of Agriculture in the Southern United States to 1800. Carnegie Institution Publication 430, Gloucester, Massachusetts.

Hacker, Debi and Michael Trinkley

Hilliard, Sam

Huneycutt, Dwight J.

Joyner, Charles

Kovacik, Charles F.
1979 South Carolina Rice Coast Landscape Changes. Proceedings of the Tall Timber Ecology and
Management Conferences, pp. 47-65. Thomasville, Georgia.

Kovacik, Charles F. and John J. Winberry

Kuchler, A.W.

Lawson, Dennis T.
1972 "No Heir To Take Its Place." The Georgetown County Historical Commission, Georgetown, South Carolina.

Larsen, Clark S. and David H. Thomas

Loftfield, Thomas C.

Michie, James L.
1977 Early Man in South Carolina. Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

Michie, James and Jay Mills

1950 An Analysis and Interpretation of...
the ceramic remains from a number
of sites in Horry County, S.C.

Hurlbut and Lloyd, Charleston. Facsimile edition, The Reprint Press,
Spartanburg, South Carolina.

Moore, Gerald 1978 White-Tailed Deer. In Game on Your
Land, part 2, edited by Cassie
Griffin, pp. 4-18. South Carolina
Wildlife and Marine Resources,
Columbia.

Columbia University Press, New
York.

Phelps, David S. 1978 Archaeological Studies in the Northern
Coastal Zone of North Carolina.
Publication No. 6. North Carolina
Archaeological Council, Raleigh.

1980 Archaeological Salvage of an Ossuary
at the Baum Site. Archaeological
Laboratory, East Carolina
University, Greenville, North
Carolina.

1981 The Archaeology of Colington Island.
Archaeological Research Report 3.
Archaeology Laboratory, East
Carolina University, Greenville,
North Carolina.

1982 A Summary of Colington Phase Sites
in the Tidewater Zone of North
Carolina. Archaeology Laboratory,
East Carolina University, Greenville,
North Carolina.

1984 Archaeology of the Tillett Site: The
First Fishing Community at
Wanchese, Roanoke Island.
East Carolina University, Greenville,
North Carolina.

Postell, William D. 1970 The Health of Slaves on Southern
Plantations. Peter Smith, Glouster.

Rathbun, Ted 1985 Current Research - University of
South Carolina. COSCAPA

Rogers, George C., Jr. 1970 The History of Georgetown County,
South Carolina. University of South

Saas, Herbert Ravenel 1941 The Ten Rice Rivers. Saturday
Evening Post, December 13: 20-21,
105-108.

Sandifer, Paul A., John V. Migliarese, Dale R. Calder,
John J. Manzi, and Lee A. Barclay
1980 Ecological Characterization of the Sea
Island Coastal Region of South
Carolina and Georgia, vol. 3. Office
of Biological Services, Fish and
Wildlife Service, Washington, D.C.

Sellers, Leila 1934 Charleston Business on the Eve of the
American Revolution. University of
North Carolina Press, Chapel Hill.

Smith, Henry A.M. 1913 Baronies of South Carolina. South
Carolina Historical Magazine 14:61-
80.

Smith, Marvin T. 1986 Archaeological Testing of Sites 2 and
3, Heritage Plantation, Georgetown.
SOURCES CITED

South, Stanley
1960a An Archaeological Survey of Southeastern North Carolina. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

1960b An Archaeological Survey of Two Islands on the White Oak River. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

1962 Exploratory Excavation of the McFayden Mound. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

South, Stanley and Michael Hartley

Stuckey, Benjamin N.

Trinkley, Michael

Trinkley, Michael, editor

Trinkley, Michael, S. Homes Hogue, Martha Zierden, and Jack H. Wilson

Walthall, John A.
Wann, E.V.

Wilson, Homes Hogue

Winberry, John J.

Zierden, Martha A. and Jeanne A. Calhoun