AN INTENSIVE ARCHAEOLOGICAL SURVEY OF
THE PHASE III CASTLEWOOD SUBDIVISION,
HORRY COUNTY, SOUTH CAROLINA

CHICORA RESEARCH CONTRIBUTION 268
AN INTENSIVE ARCHAEOLOGICAL SURVEY OF
THE PHASE III CASTLEWOOD SUBDIVISION,
HORRY COUNTY, SOUTH CAROLINA

Prepared By:
Rachel Campo

Prepared For:
Mr. Joe Floyd
The Brigman Company
P.O. Box 1532
Conway, SC 29528

Chicora Foundation Research Series 268

Chicora Foundation, Inc.
PO Box 8664 • 861 Arbutus Drive
Columbia, South Carolina 29202-8664
803/787-6910
Email: chicora@bellsouth.net

March 22, 1999
This report is printed on permanent paper.
This study reports on an intensive archaeological survey of the approximately 156 acre tract for the proposed phase III Castlewood subdivision. The tract is located off of Switch Road in the Socastee Township near Conway, South Carolina, in Horry County.

The portion of the tract located northeast of the H power line is heavily forested with pines, mixed hardwoods, and dense underbrush. This portion of the tract contained many wetland areas, in addition to a canal parallel and adjacent to the powerline which contributed to the wet conditions of the tract. The area of the tract southwest of the powerline was disturbed, with broad areas of clear cutting and tree removal. The few areas that were not cleared contained both pines and mixed hardwoods. The soils in the tract were poorly to very poorly drained.

The archaeological survey consisted of shovel testing at 100 foot intervals in the portion of the forested tract northeast of the powerline, and a pedestrian survey in the disturbed area southwest of the powerline. The wet conditions and the dense underbrush in the portion of the tract northeast of the powerline made shovel testing very difficult in this area.

No archaeological sites have been previously identified in the immediate project area, likely because of the poor drainage and dense vegetation. Likewise there are no known National Register sites or architectural sites in the immediate project area.

No archaeological sites were identified during these investigations and no further management activities are recommended, pending concurrence by the lead agency and the State Historic Preservation Office.

There is the possibility that previously unrecorded resources will be identified during construction. Crews should be made aware that if pottery, arrowheads, concentrations of bricks, or the presence of bones are found in the project area, ground disturbing work should be suspended until the finds can be assessed by either the project archaeologist or the State Historic Preservation Office.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Goals and Methods</td>
<td>1</td>
</tr>
<tr>
<td>Curation</td>
<td>6</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>7</td>
</tr>
<tr>
<td>Physiographic Province</td>
<td>7</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>7</td>
</tr>
<tr>
<td>Climate</td>
<td>8</td>
</tr>
<tr>
<td>Floristics</td>
<td>9</td>
</tr>
<tr>
<td>Prehistoric and Historic Synopsis</td>
<td>11</td>
</tr>
<tr>
<td>Prehistoric Overview</td>
<td>11</td>
</tr>
<tr>
<td>Historic Overview</td>
<td>17</td>
</tr>
<tr>
<td>Previous Archaeological Studies</td>
<td>21</td>
</tr>
<tr>
<td>Archaeological Survey and Recommendations</td>
<td>23</td>
</tr>
<tr>
<td>Archaeological Site Survey</td>
<td>23</td>
</tr>
<tr>
<td>Findings</td>
<td>23</td>
</tr>
<tr>
<td>Recommendations</td>
<td>26</td>
</tr>
<tr>
<td>Sources Cited</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figures

1. General area of the survey tract in Horry County 2
2. Survey tract on USGS topographic maps 3
3. View of the project area east of powerline 4
4. View of the project area west of powerline 4
5. Soils in project area 8
6. Generalized cultural sequence for South Carolina 12
7. Portion of Mills' Atlas showing the project area in 1826 18
8. Portion of the Horry County General Transportation and Highway Map for 1937 20
9. Project area showing H frame powerline 23
10. Transects in project area 24
11. View of wetland area in survey tract 25
12. View of disturbed area in western portion of survey tract 25
ACKNOWLEDGMENTS

I want to thank Mr. Joe Floyd of the Brigman Company, Incorporated for his confidence and support of Chicora Foundation.

I also appreciate the efforts of the State Historic Preservation Office, especially Dr. Tracy Power, and the S.C. Institute of Archaeology and Anthropology, especially Mr. Keith Derting, to provide me with information on previous surveys and identified resources.

Finally, here at Chicora, I want to thank Mr. Todd Hejlije, Ms. Kerri Barile and Ms. Suzanne Coyle for making the numerous trips necessary to gather together the information that one of these seemingly simple reports requires.
INTRODUCTION

Background

This investigation of the 157 acres for the proposed Phase III of the Castlewood Subdivision in Socastee Township, South Carolina in Horry County was conducted by the Chicora Foundation, Inc. for the Brigman Company, Inc. of Conway, South Carolina. The project area is situated at the southeastern portion of Horry County on the Lower Coastal Plain of South Carolina (Figure 1).

The tract is located near SC Highway 544 off of a dirt road named Switch Road (Figure 2). The survey tract is bisected by an H powerline which runs perpendicular to Switch Road, and separates the tract into an heavily forested and a disturbed area.

East of the powerline, the tract is a heavily wooded wetland with pines, mixed hardwoods, and a dense underbrush (Figure 3). A thick cover of leaf litter severely limits the surface visibility in this portion of the tract. West of the powerline, the tract has been subjected to clear cutting, tree removal, and bulldozing (Figure 4). A number of ditches have also been cut into this portion of the tract.

In this project area, the Brigman Company, Inc. proposes to begin construction of Phase III of the Castlewood Subdivision. For this reason, the South Carolina State Historic Preservation Office (SHPO) requested that an archaeological survey be undertaken to determine if any cultural resources would be impacted by the construction of the subdivision.

We were requested by the Brigman Company, Inc. to submit a technical and cost proposal for an intensive survey of the tract on February 12, 1999. This proposal, submitted on February 15, was approved on March 3.

These investigations incorporated a review of the site files at the South Carolina Institute of Archaeology and Anthropology by Ms. Suzanne Coyle. No previously identified sites were found in the immediate project area, although a number of sites were located along SC State Highway 544. In addition, Dr. Tracy Power at the South Carolina Department of Archives and History was asked on March 4, 1999 to check the master topographic maps at his office to locate any NRHP buildings, districts, structures, sites, or objects in the study area. In addition, his office was asked about the results of any structures surveys which might have been completed in the study area. Dr. Power reported that no such cultural resources exist in the immediate project area.

Archival and historical research, given the scope of the project, was limited to the examination of secondary materials in the Chicora Foundation research files.

The survey was conducted on March 11 and 12, 1999 by the author and Mr. Todd Hejlik. A total of 30.0 person hours were required for this investigation.

Goals and Methods

The primary goals of this study were, first, to identify the archaeological resources of the survey corridor and, second, to assess the ability of those resources to contribute significant archaeological, historical, or anthropological data. The second aspect essentially involves the site's eligibility for inclusion on the National Register of Historic Places, although Chicora Foundation only provides an opinion of National Register eligibility and the final determination is made by the lead compliance agency in consultation with the State Historic Preservation Officer at the South Carolina Department of Archives and History.

To identify sites within the corridor, a strategy of shovel testing at 100 foot intervals in the undisturbed area, and a pedestrian survey in the disturbed...
Figure 1. Project vicinity in Horry County (base map is USGS South Carolina, 1:500,000).
Figure 2. Project area (basemap is the USGS Bucksville, Conway, Nixonville and Myrtle Beach 7.5' topographic sheets).
Figure 3. View of project area east of powerline.

Figure 4. View of project area west of powerline.
area was proposed.

We anticipated that all shovel tests would about 1-foot square and were excavated to subsoil, typically 1.0 to 1.5 feet in depth. All fill would be screened through ¼-inch mesh with the tests backfilled immediately afterwards. All materials recovered from shovel testing would be retained, except brick and mortar which would be noted and discarded in the field. Shovel tests were to be sequentially numbered and recorded on the project maps.

Sites identified either through the shovel testing or through surface collections would be subjected to close interval (25 or 50-foot) shovel testing on a cruciform pattern.

Notes would be retained on representative shovel tests and photographs were taken of individual sites if warranted in the opinion of the field director. At each site the information necessary for the completion of a South Carolina Institute of Archaeology and Anthropology site form was to be collected.

Once identified, sites would be evaluated for their potential eligibility for inclusion on the National Register of Historic Places. This assessment process follows that outlined by Townsend et al. (1993) in National Register Bulletin 36. This evaluative process involves five steps, forming a clearly defined, explicit rationale for either the site's eligibility or lack of eligibility. Briefly, these steps are:

- identification of the site's data sets or categories of archaeological information such as artifacts, subsistence remains, architectural remains, or sub-surface features;
- identification of the historic context applicable to the site, providing a framework for the evaluative process;
- identification of the important research questions the site might be able to address, given the data sets and the context;
- evaluation of the site's archaeological integrity to ensure that the data sets are sufficiently well preserved to address the research questions; and
- identification of "important" research questions among all of those which might be asked and answered at the site.

Taking each of these steps individually, the first is simply to determine what is present at the site — for example, are features present, what types of artifacts are present, from what period does the site date? This represents the collection of basic, and essential, information concerning the site and the types of research contributions it can offer. This first step is typically addressed through the survey investigations, often with supporting documentation provided by historic research.

Next, it is important to understand the historic context of the site — what is the history of the project area and of the specific locality? Research questions must be posed with an understanding of this context and the context helps to direct the focus of research. The development of a historic context can be a lengthy process. The historic synopsis in this study provides a preliminary context for a wide range of different site types, although we recognize that it many ways it is superficial and lacking in detail.

Associated with the development of the context is the formation of research questions applicable to the site, its context, and its data sets. Often this research will grow out of previous projects in the area. Certainly topics of exceptional interest continue to be the examination of Middle Woodland ceramics and settlement systems in the north coastal area, the spread of eighteenth and nineteenth century farms into the Horry County area and their relationship with larger planters, and the development and lifeways of tenancy in the region.

Next it is essential to compare the data sets with the research questions — the information necessary to address the research questions must be
present at the site, else posing the question is meaningless in the evaluative process. Focusing on small projects, it may be more appropriate to concentrate on only one or perhaps two research questions and devote the energy necessary to fully explore them, then to propose a range of questions which can be only superficially explored with the data sets or resources available.

Finally, Townsend et al. recognize that not all research questions are of equal importance and that only those of fairly high value should be considered in the evaluation of National Register eligibility. Of all the steps this may be the most difficult to address. Some research questions proposed may seem pedestrian. It is consequently important to understand that significance of archaeological research questions is not judged from the perspective of the wealth, or power, or prestige of the historic persons involved. It is judged from the perspective of what the research can tell us about the past that traditional historical research cannot.

This approach, of course, has been developed for use documenting eligibility of sites actually being nominated to the National Register of Historic Places where the evaluation process must stand alone, with relatively little reference to other documentation where only, typically, one discrete site is being considered. In the case of survey evaluations some modifications of the approach seem reasonable, if not actually essential. Regardless, the approach advocated by Townsend et al. encourages researchers to carefully consider, and justify, their recommendations regarding National Register eligibility.

Curation

No archaeological materials were collected during this study. The associated field records consist only of the project maps showing the approximate location of shovel tests and notes on soil conditions. These have been retained in Chicora's project files. Photographic materials, which consist only of color prints, are not archivally stable and have therefore also been retained in Chicora's project files.
NATURAL ENVIRONMENT

Physiographic Province

The project area is situated in the southeastern portion of Horry County, just north of the Georgetown County border. The entire project is situated on a very flat, level plain interspersed with swamps and low drainages.

In general, the topography slopes to the north, toward the major drainage route of the Intercoastal Waterway, which runs parallel to the coastline and flows westwardly from Little River to the Waccamaw River (Figures 1 and 2). The Waccamaw essentially bisects the county into east and west halves and drains numerous swamps between the river and the Atlantic Ocean. The closest drainage to the project area are several arms of an unnamed intermittent creek that flows north into the Intercoastal Waterway.

Horry County is bounded to the north by Brunswick and Columbus counties, North Carolina, to the east by the Atlantic Ocean, to the south by Georgetown County, and to the west by Dillon and Marion counties. It lies within the Lower Coastal Plain which is made up of fluvial deposits that contain varying amounts of sand, silt, and clay (Dudley 1986). This is also the area known as the Atlantic Coast Flatwoods which extend from the sea shore inland about 30 to 70 miles. The area is characterized by broad flats and depressions. While there are areas of well drained sands, much of the flatwoods consists of poorly drained soils with clay subsoils, especially near the coast (Ellerbe 1974:18).

Elevations may range from sea level to about 100 feet above mean sea level in the Lower Coastal Plain. In the project area there are no areas where the land is higher than 40 feet above mean sea level, and much of the area may actually be considerably lower. A noticeable characteristic of this physiographic area is how gradually the flat lands seem to grade into either freshwater marshes, swamplands, or swamps.

Geology and Soils

The geology of the Lower Coastal Plain has been well described by Cooke (1936) who notes that from the Cape Fear River in North Carolina to Winyah Bay in South Carolina, the coast forms a “great arc scooped out by waves” (Cooke 1936:4). This area has been described by Brown (1975) as being an arcuate strand. In this area salt marshes are poorly developed or absent and few tidal inlets breach the coast (Smith 1933:20-21). This situation is the result of an erosional history about 100,000 years ago. In general, however, the geology of the Lower Coastal Plain is less complex than that of other sections of the state.

As previously mentioned, the area is dominated by fluvial deposits of unconsolidated sands and clays. Rocks are almost totally absent from the area, although Mills (1972 [1826]:584) does note that some compact shell limestone was found on the Waccamaw between Gaul’s Ferry and Bear Bluff.

Soils were primarily formed during the Pleistocene epoch and several terraces were deposited (Dudley 1986:85). The project vicinity is characterized by the Pocomoke-Echaw-Centenary Association. In general, these soils range from moderately well drained to poorly drained. They typically have a loamy or sandy surface layer coupled with a loamy or sandy subsoil.

In the project area three soils series are found (Figure 5). The Echaw sands are moderately well drained and found on broad interstream divides and flats. The surface soils are dark grayish brown (10YR4/2) sands overlying brownish yellow (10YR6/6) sands. These soils exhibit a seasonal water table of 2.5 to 5.0 feet below the surface.

The Pocomoke fine sandy loams are very poorly drained soils found in small drainages, shallow depressions, and flats. The surface soils are a black
(10YR2/1) fine sandy loam found over a very dark grayish brown (10YR3/2) sandy loam. These soils may have a seasonal water table within a half of a foot of the surface.

The Witherbee soils series is a somewhat poorly drained soil found on interstream divides and flats. The seasonally high water table occurs from 1 to 2 feet below the surface. The surface soils are a very fine sandy loam found over a very dark grayish brown (10YR3/2) sandy loam. These soils may have a seasonal water table within a half of a foot of the surface.

Edmund Ruffin, who managed to visit much of South Carolina's coast in the mid-1840s, never sought to go to Horry, commenting that, "I would have gone to Horry, which is called the "dark corner" of the state, but for having no expectation of finding anyone acquainted with or feeling interested in the objects of many explorations (Mathew 1992:215).

Climate

Elevation, latitude, and distance from the coast work together to affect the climate of South Carolina, although Horry is clearly dominated by its maritime location. Much of the weather is controlled by the proximity of the Gulf Stream, about 50 miles offshore. In addition, the more westerly mountains block or moderate many of the cold air masses that flow across the state from west to east. Even the very cold air masses which cross the mountains are warmed by compression before they descend on the Coast.

Consequently, the climate of Horry County is temperate. The winters are relatively mild with a mean temperature of 48°F and the summers are very warm and humid, with a mean temperature of 79°F and average humidity of 60%. Rainfall in the amount of

Figure 5. Soils in project area (basemap is from Dudley 1986:map 77).
about 51 inches is good for a broad range of crops. About 31 inches of rain (or 60% of the total) occurs during the growing season, with until relatively recently periods of drought not particularly common. Of course, there have been state-wide droughts, such as the one in 1845, but more often the threat to Horry crops was flooding. Major floods have occurred in 1855, 1924, 1928, 1959, 1961, and 1973, with the September 1928 flood the largest known, reaching a stage of 12.75 feet above mean sea level (U.S. Army Corps of Engineers 1973:9).

The average growing season is about 234 days, although early freezes in the fall and late frosts in the spring can reduce this period by as much as 30 or more days (Dudley 1986:97). Consequently, most cotton planting, for example, did not take place until early May, avoiding the possibility that a late frost would damage the young seedlings.

Vegetation in Horry County is characterized in relation to the previously discussed broad topographic patterns of the poorly drained floodplains and lowlands, and the well drained uplands.

The vegetation in Horry County has been classified by Kuchler (1964) as part of the Oak-Hickory-Pine forest, based on potential natural vegetation. This would consist of medium tall to tall forests of broadleaf deciduous and needleleaf evergreen trees. More specifically, however, the floodplains are covered by mixed hardwood, including bald cypress, tupelo gum, and black gum. Less water tolerant trees, such as pines, occur on the uplands or on better drained slopes. Also found in the bottomlands, floodplains, and Carolina bays are red maple, ash, water oak, elm, and sweet gum. On the better drained uplands pine dominates, with loblolly and longleaf pines being indigenous and the slash pine introduced.

In 1826 Mills in describing the Horry District vegetation, noted:

The long leaf pine abounds, also the cypress, live oak, water oak, white oak, &c. The fruit trees are, peaches, apples, pears, plums, cherries, figs, besides strawberries, which grow wild, whortleberries, &c. The forest trees begin to bud in the latter part of March, and the fruit trees in April. The pine and cypress are mostly used for buildings (Mills 1972 [1826]:582).

The poorly drained swamps and flatwoods of Horry County were not particularly attractive to early settlers and much of the area was not actively farmed for a number of years.
PREHISTORIC AND HISTORIC SYNOPSIS

Prehistoric Overview

Overviews for South Carolina's prehistory, while of differing lengths and complexity, are available in virtually every compliance report prepared. There are, in addition, some "classic" sources well worth attention, such as Joffre Coe's Formative Cultures (Coe 1964), as well as some new general overviews (such as Sassaman et al. 1990 and Goodyear and Hanson 1989). Also extremely helpful, perhaps even essential, are a handful of recent local synthetic statements, such as that offered by Sassaman and Anderson (1994) for the Middle and Late Archaic and by Anderson et al. (1992) for the Paleoindian and Early Archaic. Only a few of the many sources are included in this study, but they should be adequate to give the reader a "feel" for the area and help establish a context for the various sites identified in the study areas. For those desiring a more general synthesis, perhaps the most readable and well balanced is that offered by Judith Bense (1994), Archaeology of the Southeastern United States: Paleoindian to World War I. Figure 6 offers a generalized view of South Carolina's cultural periods.

Paleoindian Period

The Paleoindian Period, most commonly dated from about 12,000 to 10,000 B.P., is evidenced by basally thinned, side-notch projectile points; fluted, lanceolate projectile points, side scrapers, end scrapers; and drills (Coe 1964; Michie 1977; Williams 1965). Oliver (1981, 1985) has proposed to extend the Paleoindian dating in the North Carolina Piedmont to perhaps as early as 14,000 B.P., incorporating the Hardaway Side-Notched and Palmer Corner-Notched types, usually accepted as Early Archaic, as representatives of the terminal phase. This view, verbally suggested by Coe for a number of years, has considerable technological appeal. Oliver suggests a continuity from the Hardaway Blade through the Hardaway-Dalton to the Hardaway Side-Notched, eventually to the Palmer Side-Notched (Oliver 1985:199-200). While convincingly argued, this approach is not universally accepted.

The Paleoindian occupation, while widespread, does not appear to have been intensive. Artifacts are most frequently found along major river drainages, which Michie interprets to support the concept of an economy "oriented toward the exploitation of now extinct mega-fauna" (Michie 1977:124). Survey data for Paleoindian tools, most notably fluted points, is somewhat dated, but has been summarized by Charles and Michie (1992). They reveal a widespread distribution across the state (see also Anderson 1992b:Figure 5.1) with at least several concentrations relating to intensity of collector activity. What is clear is that points are found fairly far removed from the origin of the raw material. Charles and Michie suggest that this may "imply a geographically extensive settlement system" (Charles and Michie 1992:247).

Although data are sparse, one of the more attractive theories that explains the widespread distribution of Paleoindian sites is the model tracking the replacement of a high technology forager (or HTF) adaptation by a "progressively more generalized band/microband foraging".
Figure 6. A generalized cultural sequence for South Carolina (partially adapted from Coe 1964:Figure 116).
adaption" accompanied by increasingly distinct regional traditions (perhaps reflecting movement either along or perhaps even between river drainages) (Anderson 1992b:46).

Distinctive projectile points include lanceolates such as Clovis, Dalton, perhaps the Hardaway, and Big Sandy (Coe 1964; Phelps 1983; Oliver 1985). A temporal sequence of Paleoindian projectile points was proposed by Williams (1965:24-51), but according to Phelps (1983:18) there is little stratigraphic or chronometric evidence for it. While this is certainly true, a number of authors, such as Anderson (1992a) and Oliver (1985) have assembled impressive data sets. We are inclined to believe that while often not conclusively proven by stratigraphic excavations (and such proof may be an unreasonable expectation), there is a large body of circumstantial evidence. The weight of this evidence tends to provide considerable support.

Unfortunately, relatively little is known about Paleoindian subsistence strategies, settlement systems, or social organization (see, however, Anderson 1992b for an excellent overview and synthesis of what is known). Generally, archaeologists agree that the Paleoindian groups were at a band level of society, were nomadic, and were both hunters and foragers. While population density, based on isokted finds, is thought to have been low, Walthall suggests that toward the end of the period, "there was an increase in population density and in territoriality and that a number of new resource areas were beginning to be exploited" (Walthall 1980:30).

Archaic Period

The Archaic Period, which dates from 10,000 to 3,000 B.P., does not form a sharp break with the Paleoindian Period, but is a slow transition characterized by a modern climate and an increase in the diversity of material culture. Associated with this is a reliance on a broad spectrum of small mammals, although the white tailed deer was likely the most commonly exploited animal. Archaic period assemblages, exemplified by corner-notched and broad-stemmed projectile points, are fairly common, perhaps because the swamps and drainages offered especially attractive ecotones.

Many researchers have reported data suggestive of a noticeable population increase from the Paleoindian into the Early Archaic. This has tentatively been associated with a greater emphasis on foraging. Diagnostic Early Archaic artifacts include the Kirk Corner Notched point. As previously discussed, Palmer points may be included with either the Paleoindian or Archaic period, depending on theoretical perspective. As the climate became hotter and drier than the previous Paleoindian period, resulting in vegetational changes, it also affected settlement patterning as evidenced by a long-term Kirk phase midden deposit at the Hardaway site (Coe 1964:60). This is believed to have been the result of a change in subsistence strategies.

Settlements during the Early Archaic suggest the presence of a few very large, and apparently intensively occupied, sites which can best be considered base camps. Hardaway might be one such site. In addition, there were numerous small sites which needlessly" (Oliver 1981:20). He comments that according to the original definition of the Archaic, it "represents a preceramic horizon" and that "the presence of ceramics provides a convenient marker for separation of the Archaic and Woodland periods (Oliver 1981:21). Others would counter that such an approach ignores cultural continuity and forces an artificial, and perhaps unrealistic, separation. Basseman and Anderson (1994:38-44), for example, include Stallings and Thom's Creek wares in their discussion of "Late Archaic Pottery." While this issue has been of considerable importance along the Carolina and Georgia coasts, it has never affected the Piedmont, which seems to have embraced pottery far later, well into the conventional Woodland period. The importance of the issue in the Sandhills, unfortunately, is not well known.
produce only a few artifacts — these are the "network of tracks" mentioned by Ward (1983:65). The base camps produce a wide range of artifact types and raw materials which has suggested to many researchers long-term, perhaps seasonal or multi-seasonal, occupation. In contrast, the smaller sites are thought of as special purpose or foraging sites (see Ward 1983:67).

Middle Archaic (8,000 to 6,000 B.P.) diagnostic artifacts include Morrow Mountain, Guilford, Stanly and Halifax projectile points. Much of our best information on the Middle Archaic comes from sites investigated west of the Appalachian Mountains, such as the work by Jeff Chapman and his students in the Little Tennessee River Valley (for a general overview see Chapman 1977, 1985a, 1985b). There is good evidence that Middle Archaic lithic technologies changed dramatically. End scrapers, at times associated with Paleoindian traditions, are discontinued, raw materials tend to reflect the greater use of locally available materials, and mortars initially introduced. Associated with these technological changes there seem to also be some significant cultural modifications. Prepared burials begin to more commonly occur and storage pits are identified. The work at Middle Archaic river valley sites, with their evidence of a diverse floral and faunal subsistence base, seems to stand in stark contrast to Caldwell's Middle Archaic "Old Quartz Industry" of Georgia and the Carolinas, where axes, choppers, and ground and polished stone tools are very rare.

Among the most common of all Middle Woodland artifacts is the Morrow Mountain Stemmed projectile point. Originally divided into two varieties by Coe (1964:37,43) based primarily on the size of the blade and the stem. Morrow Mountain I points had relatively small triangular blades with short, pointed stems. Morrow Mountain II points had longer, narrower blades with long, tapered stems. Coe suggested a temporal sequence from Morrow Mountain I to Morrow Mountain II. While this has been rejected by some archaeologists, who suggest that the differences are entirely related to the life-stage of the point, the debate is far from settled and Coe has considerable support for his scenario.

The Morrow Mountain point is also important in our discussions since it represents a departure from the Carolina Stemmed Tradition. Coe has suggested that the groups responsible for the Middle Archaic Morrow Mountain (and the later Guilford points) were intrusive ("without any background" in Coe's words) into the North Carolina Piedmont, from the west, and were contemporaneous with the groups producing Stanly points (Coe 1964:122-123; see also Phelps 1983:23). Phelps, building on Coe, refers to the Morrow Mountain and Guilford as the "Western Intrusive horizon." Sassaman (1995) has recently proposed a scenario for the Morrow Mountain groups which would support this west-to-east transgressive process. Abbott and his colleagues, perhaps unaware of Sassaman's data, dismiss the concept, commenting that the sheer distribution and number of these points "makes this position wholly untenable" (Abbott et al. 1995:9).

The controversy surrounding Morrow Mountain also includes its posited date range. Coe (1964:123) did not expect the Morrow Mountain to predate 6500 B.P., yet more recent research in Tennessee reveals a date range of about 7500 to 6500 B.P. Sassaman and Anderson (1994:24) observe that the South Carolina dates have never matched the antiquity of their more western counterparts and suggest continuation to perhaps as late as 5500 B.P. In fact they suggest that even later dates are possible since it can often be difficult to separate Morrow Mountain and Guilford points.

A recently defined point is the MALA. The term is an acronym standing for Middle Archaic and Late Archaic, the strata in which these points were first encountered at the Pen Point site (38BR383) in Barnwell County, South Carolina (Sassaman 1985). These stemmed and notched lanceolate points were originally found in a context suggesting a single-episode event with variation not based on temporal variation. The original discussion was explicitly worded to avoid application of a typology, although as Sassaman and Anderson (1994:27) note, the "type" has spread into more common usage. There are possible connections with both the Halifax points of North Carolina and the Benton points of the middle Tennessee River valley, while the "heartland" for the
MALA appears confined to the lower middle Coastal Plain of South Carolina.

The available information has resulted in a variety of competing settlement models. Some argue for increased sedentism and a reduction of mobility (see Goodyear et al. 1979:111). Ward argues that the most appropriate model is one which includes relatively stable and sedentary hunters and gatherers "primarily adapted to the varied and rich resource base offered by the major alluvial valleys" (Ward 1983:69). While he recognizes the presence of "inter-riverine" sites, he discounts explanations which focus on seasonal rounds, suggesting "alternative explanations...[including] a wide range of adaptive responses." Most importantly, he notes that:

the seasonal transhumance model and the sedentary model are opposite ends of a continuum, and in all likelihood variations on these two themes probably existed in different regions at different times throughout the Archaic period (Ward 1983:69).

Others suggest increased mobility during the Archaic (see Cable 1982). Sassaman (1983) has suggested that the Morrow Mountain phase people had a great deal of residential mobility, based on the variety of environmental zones they are found in and the lack of site diversity. The high level of mobility, coupled with the rapid replacement of these points, may help explain the seemingly large numbers of sites with Middle Archaic assemblages. Curiously, the later Guilford phase sites are not as widely distributed, perhaps suggesting that only certain micro-environments were used (cf. Ward [1983:68-69] who would likely reject the notion that substantially different environmental zones are, in fact, represented).

Recently Abbott et al. argue for a combination of these models, noting that the almost certain increase in population levels probably resulted in a contraction of local territories. With small territories there would have been significantly greater pressure to successfully exploit the limited resources by more frequent movement of camps. They discount the idea that these territories could have been exploited from a single base camp without horticultural technology. Abbott and his colleagues conclude, "increased residential mobility under such conditions may in fact represent a common stage in the development of sedentism" (Abbott et al. 1995:9).

From excavations at a Sandhills site in Chesterfield County, South Carolina, Gunn and his colleague (Gunn and Wilson 1993) offer an alternative model for Middle Archaic settlement. He accepts that the uplands were desiccated from global warming, but rather than limiting occupation, this environmental change made the area more attractive for residential base camps. Gunn and Wilson suggest that the open, or fringe, habitat of the upland margins would have been attractive to a wide variety of plant and animal species.

The Late Archaic, usually dated from 6,000 to 3,000 or 4,000 B.P., is characterized by the appearance of large, square stemmed Savannah River projectile points (Coe 1964). These people continued to intensively exploit the uplands much like earlier Archaic groups with, the bulk of our data for this period coming from the Uwharrie region in North Carolina.

One of the more debated issues of the Late Archaic is the typology of the Savannah River Stemmed and its various diminutive forms. Oliver, refining Coe's (1964) original Savannah River Stemmed type and a small variant from Gaston (South 1959:153-157), developed a complete sequence of stemmed points that decreases uniformly in size through time (Oliver 1981, 1985). Specifically, he sees the progression from Savannah River Stemmed to Small Savannah River Stemmed to Gypsy Stemmed to Swannanoa from about 5000 B.P. to about 1,500 B.P. He also notes that the latter two forms are associated with Woodland pottery.

This reconstruction is still debated with a number of archaeologists expressing concern with what they see as typological overlap and ambiguity. They point to a dearth of radiocarbon dates and good excavation contexts at the same time they express concern with the application of this typology outside the North Carolina Piedmont (see, for a synopsis,
In addition to the presence of Savannah River points, the Late Archaic also witnessed the introduction of steatite vessels (see Coe 1964:112-113; Sassaman 1993), polished and pecked stone artifacts, and grinding stones. Some also include the introduction of fiber-tempered pottery about 4000 B.P. in the Late Archaic (for a discussion see Sassaman and Anderson 1994:38-44). This innovation is of special importance along the Georgia and South Carolina coasts, but seems to have had only minimal impact in the uplands of South or North Carolina.

There is evidence that during the Late Archaic the climate began to approximate modern climatic conditions. Rainfall increased resulting in a more lush vegetation pattern. The pollen record indicates an increase in pine which reduced the oak-hickory nut masts which previously were so widespread. This change probably affected settlement patterning since nut masts were now more isolated and concentrated. From research in the Savannah River valley near Aiken, South Carolina, Sassaman has found considerable diversity in Late Archaic site types with sites occurring in virtually every upland environmental zone. He suggests that this more complex settlement pattern evolved from an increasingly complex socio-economic system. While it is unlikely that this model can be simply transferred to the Sandhills of South Carolina without an extensive review of site data and micro-environmental data, it does demonstrate one approach to understanding the transition from Archaic to Woodland.

Woodland Period

As previously discussed, there are those who see the Woodland beginning with the introduction of pottery. Under this scenario the Early Woodland may begin as early as 4,500 B.P. and continued to about 2,300 B.P. Diagnostics would include the small variety of the Late Archaic Savannah River Stemmed point (Oliver 1985) and pottery of the Stallings and Thomas Creek series. These sand tempered Thomas Creek wares are decorated using punctations, jab-and-drag, and incised designs (Trinkley 1976). Also potentially included are Refuge wares, also characterized by sandy paste, but often having only a plain or dentate-stamped surface (Waring 1968). Others would have the Woodland beginning about 3,000 B.P. and perhaps as late as 2,500 B.P. with the introduction of pottery which is cord-marked or fabric-pressed and suggestive of influences from northern cultures.

There remains, in South Carolina, considerable ambiguity regarding the pottery series found along the northern coast and their association with more southern coastal plain and piedmont types. The earliest pottery found at many sites may be called either Deptford, Yadkin, or Cape Fear depending on the research or their inclination at any given moment.

The Deptford phase, which dates from 3050 to 1350 B.P., is best characterized by fine to coarse sandy paste pottery with a check stamped surface treatment. The Deptford settlement pattern involves both coastal and inland sites.

Inland sites such as 38AK228-W, 38LX5, 38RD60, and 38BM40 indicate the presence of an extensive Deptford occupation on the Fall Line and the Inner Coastal Plain/Sand Hills, although sandy, acidic soils preclude statements on the subsistence base (Anderson 1979; Ryan 1972; Trinkley 1980). These interior or upland Deptford sites, however, are strongly associated with the swamp terrace edge, and this environment is productive not only in nut masts, but also in large mammals such as deer. Perhaps the best data concerning Deptford "base camps" comes from the Lewis-West site (38AK228-W), where evidence of abundant food remains, storage pit features, elaborate material culture, mortuary behavior, and craft specialization has been reported (Sassaman et al. 1990:96-98; see also Sassaman 1993 for similar data recovered from 38AK157).

Further to the north and west, in the Piedmont, the Early Woodland is marked by a pottery
type defined by Coe (1964:27-29) as Badin. This pottery is identified as having very fine sand in the paste with an occasional pebble. Coe identified cord-marked, fabric-marked, net-impressed, and plain surface finishes. Beyond this pottery little is known about the makers of the Badin wares and relatively few of these sherds are reported from South Carolina sites.

Somewhat more information is available for the Middle Woodland, typically given the range of about 2,300 B.P. to 1,200 B.P. In the Piedmont and even into the Sand Hills, the dominant Middle Woodland ceramic type is typically identified as the Yadkin series. Characterised by a crushed quartz temper the pottery includes surface treatments of cord-marked, fabric-marked, and a very few linear check-stamped sherds (Coe 1964:30-32). It is regrettable that several of the seemingly "best" Yadkin sites, such as the Trestle site (31An19) explored by Peter Cooper (Ward 1983:72-73), have never been published.

Yadkin ceramics are associated with medium-sized triangular points, although Oliver (1981) suggests that a continuation of the Piedmont Stemmed Tradition to at least 1650 B.P. coexisted with this Triangular Tradition. The Yadkin in South Carolina has been best explored by research at 38SU83 in Sumter County (Blanton et al. 1986) and at 38FL249 in Florence County (Trinkle et al. 1993).

In some respects the Late Woodland (1,200 B.P. to 400 B.P.) may be characterized as a continuation of previous Middle Woodland cultural assemblages. While outside the Carolinas there were major cultural changes, such as the continued development and elaboration of agriculture, the Carolina groups settled into a lifeway not appreciably different from that observed for the previous 500-700 years. From the vantage point of the Middle Savannah Valley Sassaman and his colleagues note that, "the Late Woodland is difficult to delineate typologically from its antecedent or from the subsequent Mississippian period" (Sassaman et al. 1990:14). This situation would remain unchanged until the development of the South Appalachian Mississippian complex (see Ferguson 1971).

Historic Overview

The earliest activity in the Horry County area may have been the Spanish Ayllon movement from Rio Jordon (Cape Fear River) to San Miguel de Gualape, 45 leagues distant. Some have argued that Fort San Miguel may have been at the mouth of Winyah Bay, although Paul Hoffman has recently suggested the fort was in Beaufort County, South Carolina or Chatham County, Georgia.

While the English settled Charleston in 1670, the northern frontier was ignored, except for Indian trade, until 1731, when the first Royal Governor of Carolina, Robert Johnson, directed 11 townships to be laid out, including Kingston on the west bank of the Waccamaw. Kingston covered much of Georgetown and Horry counties and by 1734 the town of Kingston, later known as Conwayboro and eventually Conway, was founded. The township, however, was never erected into a parish, but remained part of the Parish of Prince George, Winyah until 1785. In that year Prince George District was divided into four districts and by 1801 Horry District was formally separated from Georgetown District (Rogers 1972:9). The designations of "county" was not used until 1868. A variety of townships were established, including Simpson Creek and Little River on the south side of the Waccamaw River.

Prior to the Revolution there were few residents in Kingston and it was not until the late eighteenth century that English, French, Scotch, and Irish settlers began coming into the area. Many settlers in the early nineteenth century came from North Carolina and the northern seaboard states.

In spite of Horry's coastal plain situation, the area developed along vastly different lines than its southern neighbors Georgetown and Charleston. Horry District was always isolated from the remainder of South Carolina and had much stronger connections

\(^3\)The ceramics suggest clear regional differences during the Woodland which seem to only be magnified during the later phases. Ward (1983:71), for example notes that there are "marked distinctions" between the pottery from the Buggs Island and Gaston Reservoirs and that from the south-central Piedmont.
with North Carolina (Rogers 1972:3). The major traffic artery was the Waccamaw River and this reliance on river transport did not change until the highway development of the 1930s. Subsistence farming was the main occupation in the early 1800s and the farms were small, specializing in peas, wheat, rice, cotton, and corn, most for home consumption (Rogers 1972:5). Mills notes that the population was mostly engaged in cultivating the soil. There are a few mechanics, such as blacksmiths, shoemakers, tailors [sic], halters, etc. (Mills 1972 [1826]:583).

In Mills' Atlas of 1826, the Horry District was surveyed by Harlee in 1820. At this time there seem to have been no residences in the vicinity of the project area (Figure 7). This absence of houses may not so much indicate sparse settlement as it may reflect the subscription basis of Mills' Atlas. The subsistence farmers of Horry District may either have been unable to subscribe or may have had no need to let others know their location. The 1860 census for Horry District indicates that many of the farmers in Kingston, for example, could neither read nor write, further reducing the benefits of listing in an atlas.

The emphasis on subsistence farming appears to be the result of topography. Only 20% of the land is subject to the type of tidal overflow necessary for wet cultivation of rice. Mills (1972 [1826]:581) notes that the river floodplain soil was productive where it could be reclaimed by drainage, while the upland soils were much less productive. This difference in quality is reflected in the prices for the land. Mills states that, the low land swamps, when secured from the freshets, will sell for 40 or $50 an acre. The uplands are valued at from $4 down to 25 cents per acre (Mills 1972 [1826]:581).

Interestingly, the price of "improved farms" ranged from $20 to $50 an acre as late as 1918 (Tillman et al. 1919:340). The few plantations found in Horry District were primarily located in All Saints Parish, east and south of the Waccamaw River. It was from...
this area that a small quantity of rice was exported throughout the nineteenth century (Rogers 1972:13).

Because the soils of Horry District were not able to support plantation agriculture a unique distribution of population and a very low percentage of slaves were found in the region. Horry County also continued to play a minor role in state politics. The area, prior to the Civil War, was oriented to smaller farmers and never developed an aristocratic plantation society with political and economic power. Most of the farms, including the larger ones were situated in Kingston Township. The 1860 census indicates that of the 782 farms, 560 were in Kingston (Rogers 1972:12). In 1860, the population was 2606 and there were only 708 slaves. This ratio of 70% white and 30% black has not only remained stable into the twentieth century, but also stands in contrast to Georgetown District where about 12% of the population was white and 88% was black until the 1880 census, when the white population increased to about 20% (Rogers 1972).

Horry District never sided with the radical secessionists, possibly because of the influence of northerners or because of the resentment of the political and economic power of slave owners. In any event, Horry County responded enthusiastically to the call for volunteers at the outbreak of the Civil War (Rogers 1972:35).

By the 1830s a new industry was competing with farming in the Horry area. Northern immigrants from Maine, coupled with “pine woods speculators” from North Carolina began to exploit the forest products of both the uplands and swamp areas (Tillman et al. 1919:330; Berry 1970; Rogers 1972:14). The Horry District was the leading turpentine producer in South Carolina by 1860, producing products valued at $392,643. The lumber and turpentine industry continued to grow rapidly after the Civil War. Tobacco was introduced about 1850, but was not an important crop until after the Civil War, lead by the Green Sea Township.

Horry District saw little involvement in the Civil War, although 925 of the 1,000 men in the voting population volunteered for duty and served (Rogers 1972:35). Fort Randell was established at Clardy’s Point on the Little River and saw skirmishes in 1863 and 1865. The salt works of Peter Vaught, Sr. at Singleton Swash were raided in April 1864, and in 1865 a Union expedition was led up the Waccamaw to destroy ferries at Bull Creek and Yahannah (Rogers 1972:35-38).

After the Civil War, Horry was part of the Military District of Eastern South Carolina, but the Federal stay was short and by 1866 military troops had left Horry County. This absence of Federal troops continued throughout Reconstruction and the Democrats maintained political control throughout the period. Further, there was no land distribution in Horry County, possibly because there was really no land worth distributing (Rogers 1972:47). Following the Civil War a number of changes began to affect the Horry area. Tobacco began to be a more important crop, the first county bank was organized in 1880, the railroad and telegraph arrived in 1887, and in 1889 a regular weekly county newspaper appeared (the Horry Weekly News, which published until 1877). Conwayboro was changed to Conway in 1883 and the only other “town” continued to be Little River.

The turpentine business boomed in the 1870s and by 1880 there were 21 operators in the county, producing $181,400 annually (Rogers 1972:50). Farming, however, continued to be important. In 1870 there were 1,300 farms averaging 50 acres in size. The major crops were still subsistence items such as corn, sweet potatoes, and rice. Few wage employees were found in Horry (Rogers 1972:58). The Socastee and Little River townships had the richest farms and the five largest farms also produced turpentine in 1870 (Rogers 1972:60). The Grange movement arrived in Horry County relatively late, never organized in many areas, and failed by the late 1870s.

By 1910 the County population had increased to almost 27,000 but there was no town, including Conway, with a population of at least 2,500. Conway continued, however, to have strong lumbering and mercantile interests. With the gradual decline of lumbering and the turpentine industry, farming was once again the dominant activity in the county. The period from 1880 to 1910 saw corn acreage increase
140%, cotton acreage increase 90%, and tobacco acreage increase from 19 to 5,347 acres. During the same time rice production fell from 747,689 to 1,210 pounds (Tillman et al. 1919:333). By 1919 the chief money crops were corn, cotton, and tobacco, although corn was largely used to supply the home and fatten stock. After 1895 tobacco began to replace cotton as a prime money crop and by 1910 was grown more or less generally over a county by small farmers who live on their farms and superintend the work (Tillman et al. 1919:335).

Livestock production has never been important in Horry County and in the early twentieth century hogs were the principle source of livestock income. These animals were usually slaughtered in the fall for home use or sale on the local market. Cattle were mostly scrub stock and dairying was neglected. Farm equipment was largely inadequate in the early 1900s and most of the plowing was done with one ox or mule. On many small farms the adequacy of farm equipment did not appreciably improve into the 1940s, when the probate inventory for one small Horry farmer listed only one mule, a one-horse wagon, one disc, four plows, one lot hoes, one guano distributor, a tobacco sprayer, and a corn planter (Trinkley and Caballero 1983:8). Tillman et al. (1919:338) indicate that in the early 1900s plowing was seldom more than 2 to 3 inches deep because of the poor machinery. It is suggested that this lack of equipment was not entirely related to a lack of prosperity, but rather was largely the result of cheap labor. Tillman et al. report that, "negro men receive 75 cents to $1.25 a day . . . , while negro women are paid 50 to 65 cents a day" (Tillman et al. 1919:340).

Horry County, in 1910, had a relatively low rate of farm tenancy. The 1937 General Highway and Transportation Map of Horry County shows no tenant houses in the project area (Figure 8). Tillman et al. (1919:340) indicate that 72.9% of the farms were operated by owners and 27% by tenants. The average size of such farms (each tenancy is classified as a farm) was 117.8 acres. This is contrasted with piedmont Spartanburg, where in 1920 32.1% of the farms were operated by their owners and 67.7% were operated by tenants. In Spartanburg, where cotton was still king, the average farm size was 49.4 acres (Latimer et al.
PREHISTORIC AND HISTORIC SYNOPSIS

1924:419). This dichotomy documents the differences between tenancy in the Atlantic Coastal Plain, where there was a low "devotion" to cotton, and in the Black Belt and Upper Piedmont, where cotton was more important, tenancy rates higher, and farm size smaller (see Woofter et al. 1936).

Previous Archaeological Studies

Horry has received rather spotty archaeological attention. Derting and his colleagues, for example, list 67 reports associated with the county, with 41 of these (or 61%) representing highway or sewer surveys (Derting et al. 1991). Although dated, this indicates that the attention has been focused on relatively narrow, constrained corridors, with only minor attention devoted to the area's rich prehistoric and protohistoric resources.

Considerable, primarily unpublished, research took place in the Myrtle Beach area during the 1960s at the Ellsworth Site by Erika Fogg-Amed, then a student of Reinhold Englemyer at USC-Conway. Several test units were placed within the site which yielded Stallings, Thom's Creek, Hanover, and Cape Fear sherds, as well as a Morrow Mountain component (Fogg-Amed n.d. a). No site boundaries were established and, in fact, no site form has ever been filed.

Fogg-Amed also tested the "Coates Site," located about 10 miles north of Myrtle Beach on a high bluff overlooking a freshwater pond. Testing at this site yielded a dense shell midden that produced only lithic debitage (Fogg-Amed n.d. b). Again, no site form was ever completed and the report is available only as a draft.

This unfortunately is characteristic of much of the early work in this part of South Carolina, which even into the late twentieth century held its representation as being "the dark corner."

Chicora Foundation conducted a previous survey for Santee-Cooper, examining the proposed Dick Pond Road Switching Station in 1994 (Adams 1994), as well as a proposed 407 acre development tract to the north (Adams 1995). Neither study found any evidence of archaeological remains — in both cases largely because of the low, poorly drained soils.
ARCHAEOLOGICAL SURVEY AND RECOMMENDATIONS

Archaeological Site Survey

The project area was divided into two areas: the area east of the H powerline which was not disturbed, and the area southwest of the H powerline which was disturbed (Figure 9).

The eastern portion of the tract was shovel tested at 100-foot intervals along transects that were also spaced at 100-foot intervals. A total of 30 transects were placed in this area and 314 shovel tests were to be excavated along the transects (Figure 10).

More than half of these shovel tests could not be excavated due to standing water (Figure 11). Shovel tests were dug to subsoils, which generally occurred 1.0 foot below the subsoil. The soils were uniform throughout the shovel tests with a gray loamy sand overlying a yellowish-brown subsoil. The water table occurred from the surface to about 1.0 foot below the ground surface. No archaeological or historical remains were encountered.

The area west of the powerline was pedestrian surveyed due to the extensive disturbance in the area (Figure 12). No archaeological or historical remains were encountered in this area.

Findings

No archaeological or historical sites were identified in the surveyed areas. In addition, no previously identified sites were recorded for the project area at the S.C. Institute of Archaeology and Anthropology.

While the entire corridor was not surveyed, it is unlikely that any archaeological sites are located in the project area given its very poor drainage characteristics. At the time of the survey water tables were found to be...
Figure 10. Transects in project area.
Figure 11. View of wetland area in survey tract.

Figure 12. View of disturbed area in western portion of survey tract.
appreciably higher than normal and soils not normally flooded exhibited standing water. Although this is not a routine situation, it does point out that the project area is in a zone that was little used by either prehistoric or historic groups.

Recommendations

Upon approval by the S.C. State Historic Preservation Office, the Brigman Company, Inc. will have fulfilled its cultural resource protection obligations and no additional management activities will be necessary.

It is possible that in spite of this intensive survey, additional archaeological remains may be encountered during construction. If concentrations of pottery, ceramics, arrowheads, bottles, or other remains such as bricks or structural debris are identified, all work in the site area should cease until the site can be assessed by either Chicora Foundation or the State Historic Preservation Office. The contractor should be notified to be alert to the possibility of additional archaeological remains.
Abbott, Lawrence E., Jr., John S. Cable, Mary Beth Reed, and Erica E. Sanborn

Adams, Natalie

INtENSIVE ARCHAEOLOGICAL SURVEY OF THE PHASE III CASTLEWOOD SUBDIVISION

Chapman, Jefferson

1985b Tellico Archaeology: 12,000 Years of Native American History. Reports of Investigations 43, Occasional Paper 5, University of Tennessee, Knoxville.

Charles, Tommy and James L. Michie

Coe, Joffre

Cooke, C. Wythe

Daniel, L. Randolph, Jr.

Denting, Keith M., Sharon L. Pekul, and Charles J.

Rinehart

Dudley, Travis A.

Ellerbe, Clarence M.

Ferguson, Leland C.

Fogg-Amed, Hilda

Goodyear, Albert C., III and Glen T. Hanson

Goodyear, Albert C., John H. House, and Neal W. Ackerly
and Anthropology, University of South Carolina, Columbia.

1977 The Late Pleistocene Human Occupation of South Carolina. Unpublished Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

1972 facsimile ed. The Reprint Company, Spartanburg, South Carolina.

Sassaman, Kenneth E. 1985 A Preliminary Typological Assessment of MALA Hafted Bifaces from the Pen
INTENSIVE ARCHAEOLOGICAL SURVEY OF THE PHASE III CASTLEWOOD SUBDIVISION

Point Site, Barnwell County, South Carolina. South Carolina Antiquities 17:1-17.

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson 1990 Native American Prehistory of the Middle Savannah River Valley, Savannah River Archaeological Research Papers 1. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Smith, Lynwood 1933 Physiography of South Carolina. Unpublished M.S. Thesis, Department of Geology, University of South Carolina, Columbia.

Trinkley, Michael 1976 A Typology of Thom's Creek Pottery from the South Carolina Coast. Unpublished Master's thesis. Department of Anthropology, University of North Carolina, Chapel Hill.

Trinkley, Michael and Olga M. Caballero 1983 Additional Archaeological, Historical, and Architectural Evaluation of 38HR127 and 38HR131, Horry County, South Carolina. S.C. Department of Highways and Public Transportation, Columbia.

U.S. Army Corps of Engineers
1973 Flood Plain Information — Waccamaw River, Kingston Lake Swamp, Crab Tree Swamp, City of Conway, South Carolina. Charleston District, Corps of Engineers, Charleston, South Carolina.

