INTENSIVE ARCHAEOLOGICAL SURVEY
OF THE 3V 115kV TAP TRANSMISSION LINE,
GEORGETOWN COUNTY, SOUTH CAROLINA

CHICORA RESEARCH CONTRIBUTION 179
INTENSIVE ARCHAEOLOGICAL SURVEY
OF THE 3V 115kV TAP TRANSMISSION LINE,
GEORGETOWN COUNTY, SOUTH CAROLINA

Prepared By:
Michael Trinkley, Ph.D.

Prepared For:
Mr. Ken Smoak
Sabine & Waters
P.O. Box 1072
Summerville, S.C. 29484

CHICORA RESEARCH CONTRIBUTION 179

Chicora Foundation, Inc.
P.O. Box 8664 • 861 Arbutus Drive
Columbia, South Carolina 29202-8664
803/787-6910
Email: chicoral@aol.com

November 20, 1995

This report is prepared on permanent, recycled paper.
ABSTRACT

This study presents the results of an intensive archaeological survey of the proposed 3V Chemical 115kV Tap Transmission Line in Georgetown County, about 3 miles west-southwest of the City of Georgetown. The corridor is about 0.8 mile in length and the typical right-of-way is 70 feet. The purpose of this intensive archaeological investigation was to locate any archaeological, historical, or architectural sites which might exist on the tract and evaluate them for their eligibility for inclusion on the National Register of Historic Places.

Examination of the site files housed at the South Carolina Institute of Archaeology and Anthropology indicated that there were no previously recorded archaeological sites for the tract. A request was faxed to the S.C. Department of Archives and History for information on any previous historic surveys which may have been conducted in the project area or for information on any known National Register or National Register eligible sites in the immediate survey area. As of the date of this study no response has been received.

The archaeological survey initially utilized shovel tests excavated at 100 foot intervals. After investigation of approximately 30% of the corridor it was found that virtually all of the soils were reduced and wet. Areas of standing water were frequently encountered. The remainder of the corridor was investigated using shovel tests at 200 foot intervals. Where possible the fill was screened through ¼-inch mesh. Where soils were too wet, they were briefly examined with a trowel for any evidence of cultural remains. In addition to these methods about 80% of the corridor was paralleled by a dirt access road which was subjected to a pedestrian survey.

No archaeological remains were encountered in the survey and no additional archaeological investigations are recommended. Should evidence of unidentified cultural remains be found during construction, the project manager should halt construction and immediately notify the S.C. State Historic Preservation Office or Chicora Foundation.
TABLE OF CONTENTS

List of Figures .. iv
Introduction .. 1
Natural Environment ... 5
Background Research .. 6
 Previous Archaeology
 Prehistoric Synopsis
 Historic Synopsis
Field Methods .. 12
Results and Conclusions 14
References Cited ... 15
LIST OF FIGURES

1. Project vicinity
2. Project area showing the survey corridor
3. General view of the corridor through low woods
4. General view of the project area by 3V Chemicals
INTRODUCTION

This investigation was conducted by Dr. Michael Trinkley of Chicora Foundation, Inc. for Mr. Ken Smoak of Sabine & Waters. The proposed tap line is situated in central Georgetown County, about 3 miles west-southwest of the City of Georgetown on the south side of the Sampit River (Figure 1). The corridor begins at the existing Winyah-Georgetown lines and runs west-southwest, paralleling a dirt access road. After 3000 feet it turns to the north, paralleling a gas pipeline for 500 feet. Coming to the corner of the 3V Chemical plant property the right-of-way again turns to the west-southwest and extends another 1000 feet to a Santee Co-op substation (Figure 2). Throughout its entire length the proposed right-of-way for the corridor is 70 feet (35 feet on either side of the centerline).

The corridor begins in an area of low woods (owned by International Paper; Figure 3) and terminates at a proposed substation on slightly higher and better drained soils adjacent to the chemical plant (Figure 4). Vegetation throughout the survey area consists of pine with scatter hardwoods, although the dominating characteristic of the survey corridor is its low, wet condition and highly reduced soils.

The proposed project will involve the clear cutting and grubbing of the corridor with extensive probable damage by heavy equipment (potentially magnified by the poorly consolidated, wet soils). Once cleared towers or poles will be constructed to carry the 115kV tap line from the existing transmission lines to the substation. After construction the corridor will be periodically maintained by bush hogging and tree trimming. Access roads may also be constructed as part of the construction activities. Combined, these activities have the potential to damage or destroy archaeological resources if they exist within the corridor.

This study is intended to provide a detailed explanation of the archaeological survey of the 3V Chemical tap line, and the findings. Santee-Cooper, as part of their dedication to environmental protection, requested that this survey be conducted through their environmental consultant on the project, Sabine and Waters. A budget proposal was provided by Chicora Foundation on October 13 and the project was approved on November 6, 1995.

Ms. Debi Hacker examined the site files of the S.C. Institute of Archaeology and Anthropology. A project area map was faxed to the S.C. Historic Preservation Office on November 13 requesting information on National Register sites and previous architectural surveys. No response had been received as of the date of this report (November 20, 1995).

The field investigations were undertaken by Dr. Michael Trinkley on November 13, 1995. The project overview and report production have taken place at Chicora Foundation's laboratories in Columbia on November 14, 1995.
Figure 2. Project area showing the transmission line survey corridor (source: U.S.G.S. Kilsock Bay and Georgetown South 7.5°).
Figure 3. View of woods and dirt access road to the south of the proposed corridor.

Figure 4. View of corridor south of 3V Chemicals showing woods and cut parking lot.
NATURAL ENVIRONMENT

Georgetown County is situated in the northern lower coastal plain of South Carolina and is bounded on the east by about 37 miles of irregular Atlantic Ocean shoreline (including marsh and barrier islands such as Pawleys and Litchfield). The mainland topography consists of subtle undulations in the landscape characteristic of ridge and bay topography of beach ridge plains. Elevations in the county range from sea level to about 75 feet mean sea level (MSL) (Mathews et al. 1980:132).

The County is drained by five significant river systems, four of which (the Waccamaw, Black, Pee Dee, and Santee rivers) have significant freshwater discharge and only one of which (the Sampit River) is dominated by tidal action. Because of the low topography, however, many broad, low gradient interior drains are present as either extensions of tidal streams and rivers or flooded bays and swales. There are many diverse wetland communities influenced by either the freshwater drainage or tidal flows. Upland vegetation in the County is primarily pine or mixed hardwood and pine. Large areas of Georgetown County are in forest, with only 6.7% of the acreage being cultivated and 4.2% being urbanized (Mathews et al. 1980:132). The study corridor is, in this sense, typical — being in planted pine (found dominating the portions of the corridor passing through the International Paper Research Forest) and consisting of a relatively low swale area.

The geology of the county is characteristic of the coastal plain, with unconsolidated, water-laid beds of sands and clays overlying thick beds of soft marl. The 3V tap line corridor is characterized by four soil series: poorly drained Bladen loam (found as a remnant branch at the eastern end of the corridor), poorly drained Griffon loamy fine sands (found at the western end of the corridor adjacent to the gas pipeline), moderately well drained Yauhannah loamy fine sands (found at the extreme eastern and eastern ends of the corridor), and somewhat poorly drained Yemassee loamy fine sands (found throughout the middle portion of the corridor and, at the time of the survey, associated with large areas of standing water) (Stuckey 1982:Map 44). The Bladen and Griffon soils may have seasonal water tables apparent within the upper foot of soil between December and May (occurring earlier this year perhaps because of the recent heavy rainfall). The Yauhannah and Yemassee soils tend to be somewhat drier, but may also have seasonal water tables within the upper 1.5 feet, again primarily during the winter and spring (Stuckey 1982:Table 16).

The survey tract is characterized by elevations ranging from about 10 to 15 feet MSL. The topography throughout is relatively level, with only a slight rise at the western end of the corridor, as it approaches the substation. Elsewhere the elevation may vary locally, largely the result of land use practices and artificial changes in the landform. While we no areas on the centerline which were designated wetlands, many areas of poorly drained soil contained either areas of standing water or revealed water in shovel testing. The only "dry" portions of the corridor were found at either end — areas dominated by the drier Yauhannah soils.
BACKGROUND RESEARCH

Previous Archaeology

Although considerable prehistoric research has been conducted along the central and southern coast of South Carolina (see Anderson and Logan 1981; Trinkley 1980a; Trinkley 1990a and 1990b) very little research has focused on the coast north of the Santee River. The earliest published work from the area is Carl Miller’s (1950) brief study of 884 sherds from nine sites in the vicinity of Myrtle Beach, Horry County. All of these sites were situated on small sandy ridges overlooking Long Bay and evidenced only light scatters of shell and pottery. A brief re-examination of the collections from one of Miller’s sites (H01) in 1979 resulted in the identification of probable Deep Creek and Hanover wares.

Waldemar H. Ritter, from the Charleston Museum, was collecting from sites in the Georgetown area as early as 1933. Sites were found at Pawleys Island and on the Baruch property at Waccamaw Neck, but the descriptions are insufficient to allow the sites to be identified today.

Stanley South (1960a), reporting on a survey of southeastern coastal North Carolina and the northeast coast of South Carolina, offered type descriptions for the Thom’s Creek, Cape Fear, Hanover, and Oak Island series. South’s sites were found adjacent to the estuary, in similar environmental contexts as reported by Miller (1950). These findings were largely supported by his survey of Alder’s and Russell’s islands in the White Oak River in Onslow County, North Carolina (South 1960b).

South (1962) also examined a probable Middle Woodland sand burial mound in Brunswick County, North Carolina (see also Wilson 1982). The mound, formed by the covering of secondary deposits of cremated remains, contained few artifacts but is part of a widespread burial mound tradition found along the coasts of North and South Carolina, and Georgia (see Brooks et al. 1989; Larsen and Thomas 1982; Rathbun 1985).

Between 1963 and 1965 additional, largely unreported, work was being conducted in Georgetown and Horry counties by the South Carolina Institute of Archaeology and Anthropology (Dr. William Edwards) and students from the University of South Carolina-Coastal Carolina campus. Information on this work has been gathered together by Erika Fogg-Amed (1980). As a result of this work, Fogg-Amed (1980) developed a sequence from the Paleoindian though the late Pee Dee.

Following South’s 1960 survey and typological assessment of coastal pottery, work by Crawford (1966) and later by Loftfield (1976) continued to emphasize the North Carolina coast. While these studies tended to develop more or less local typologies, work in the late 1970s by David Phelps began to synthesize the North Carolina coastal typologies (Phelps 1978, 1980, 1981, 1982, 1984). One of the most important contributions of this work was the recognition that South’s “Cape Fear” series actually represented at least two Early and Middle Woodland series lumped together. The application of much of this North Carolina sequence to the South Carolina coast is discussed by Trinkley (1983).

Recent work at Minim Island (Espenshade and Brockington 1989) explored an Early Woodland site evidenced by Thom’s Creek, Refuge, Deptford, and Deep Creek pottery. Subsistence studies indicated seasonal use of the site with an emphasis on fishing and oyster gathering.

Most sites, based on these previous studies, are found on excessively to well drained soils, although
a few are consistently found in areas which are poorly drained (which suggests that factors other than drainage may occasionally have determined aboriginal settlement locations). Also, work at 38GE377 (Adams 1993) suggests that prehistoric sites are often located on major sand ridges overlooking wetlands.

Work by South and Hartley (1980) suggests that major historic site complexes will be found on high ground adjacent to a deep water access. Plantation main house tend to be located on the highest and best drained soils, while slave settlements may be found intermediate or even poorly drained areas. Both settlement types, however, tend to be in close proximity to the rice fields. Extractive or milling sites will be located near necessary raw materials and where the products can be easily transported in and out. Healthful conditions and drainage are not usually significant considerations.

Historical archaeological research in Georgetown County consists primarily of all levels of work at plantations along Waccamaw Neck. The testing and data recovery investigations include work at Richmond Hill Plantation (Michie 1987, 1988, and 1990; Michie and Mills 1988), The Oaks and Laurel Hill Plantations (Drucker 1980), Campfield Plantation (Zierden and Calhoun 1983), Willbrook, Oatland, and Turkey Hill Plantations (Trinkley 1987; Trinkley 1993), and Midway Plantation (Smith 1986). Information from these works have been synthesized by Trinkley (1993) and should be consulted for further information.

In 1993 Chicora Foundation used a variety of cartographic resources to identify potential archaeological and historical resources in Georgetown County. Funded by a National Park Service Survey and Planning Grant (administered by the S.C. Department of Archives and History), with additional funding by the City of Georgetown, Georgetown County, the Waccamaw Regional Planning Council, and the S.C. Coastal Council, this study resulted in the identification of 810 potential historical sites (Hacker and Trinkley 1993).

None of these sites were identified in the proposed corridor. The Porter or Harmony plantation was identified about a mile to the northeast of the project, adjacent to the Sampit River, while about three-quarters of a mile to southwest, on Pennyroyal Road, a late nineteenth century farmstead was identified. Likewise a range of sites, including Moyd village, Penny Royal School, and Thomas Chapel, were identified south of the project on Pennyroyal Road (Hacker and Trinkley 1993).

The closest archaeological site recorded by the S.C. Institute of Archaeology and Anthropology is 38GE28, situated in the Sampit River about 0.6 mile north-northwest of the project corridor (Keith Derting, personal communication 1995). At the date of this report we have not heard from the S.C. Department of Archives and History concerning any National Register sites or historic sites in the project area.

Prehistoric Synopsis

The Paleoindian period, lasting from 12,000 to 8,000 B.C., is evidenced by basally thinned, sidenotched projectile points; fluted, lanceolate projectile points; side scrapers; end scrapers; and drills (Coe 1964; Michie 1977). The Paleoindian occupation, while widespread, does not appear to have been intensive. Points usually associated with this period include the Clovis and several variants, Suwannee, Simpson, and Dalton (Goodyear et al. 1989).

At least three Paleoindian projectile point has been found in Georgetown County which were found adjacent to rivers and major tributaries (Charles 1986:16). This pattern of artifacts found along major river drainages has been interpreted by Michie to support the concept of an economy "oriented towards the exploitation of now extinct mega-fauna" (Michie 1977:124).

Unfortunately, little is known about Paleoindian subsistence strategies, settlement systems, or social organization. Generally, archaeologists agree that the Paleoindian groups were at a band level of society, were nomadic, and were both hunters and foragers. While population density, based on the isolated finds, is thought to have been low, Walthall suggests that toward the end of the period, "there was an increase in
population density and in territoriality and that a number of new resource areas were beginning to be exploited" (Walthall 1980:30).

The Archaic period, which dates from 8000 to 2000 B.C., does not form a sharp break with the Paleoindian period, but is a slow transition characterized by a modern climate and an increase in the diversity of material culture. Archaic period assemblages, characterized by corner-notched, side-notched, and broad stemmed projectile points, are common in the vicinity, although they rarely are found in good, well-preserved contexts.

The Woodland period begins, by at least one definition, with the introduction of fired clay pottery about 2000 B.C. along the South Carolina coast and much later in the Carolina Piedmont, about 500 B.C. It should be noted that many researchers call the period from about 2500 to 1000 B.C. the Late Archaic because of a perceived continuation of the Archaic lifestyle in spite of the manufacture of pottery. Regardless of terminology, the period from 2000 to 500 B.C. was a period of tremendous change.

The subsistence economy during this early period was based primarily on deer hunting and fishing, with supplemental inclusions of small mammals, birds, reptiles, and shellfish. Various calculations of the probable yield of deer, fish, and other food sources identified from some coastal sites indicate that sedentary life was not only possible, but probable. Further inland it seems likely that many Native American groups continued the previous established patterns of band mobility. These frequent moves would allow the groups to take advantage of various seasonal resources, such as shad and sturgeon in the spring, nut masts in the fall, and turkeys during the winter.

The South Appalachian Mississippian period, from about A.D. 1100 to 1640 is the most elaborate level of culture attained by the native inhabitants and is followed by cultural disintegration brought about largely by European disease. The period is characterized by complicated stamped pottery, complex social organization, agriculture, and the construction of temple mounds and ceremonial centers.

There is minimal archaeological evidence for historic Indian occupation along the Waccamaw River. The only known historic Indian site investigated is Wachesaw Landing, located about 17 miles north of the city of Georgetown associated with the historic Waccamaw Indian. Historic trade beads and copper or brass items were found in addition to two flexed burials (Trinkley et al. 1983).

Historic Synopsis

The first white settlers were drawn to the Waccamaw Neck area around Winyah Bay by the lure of lucrative Indian trade. The English, Scots, and French acquired land through proprietary and royal land grants, beginning as early as 1705. However, the majority of lands were granted in the 1730s (Rogers 1970:12, 20, 26). Access to water was an important factor in land development. The earliest policy was to grant narrow river frontage in order to give more settlers river access. Among the first grantees was Percival Pawley, who, through a series of land grants, obtained 24,000 acres on the Pee Dee, Sampit, and Waccamaw rivers in 1711 (Rogers: 1970:16-21).

Indigo was one of the area's first major crops, but had a relatively short life of less than 50 years. Production, which began in the 1740s and reached its peak from 1754-1760, was artificially stimulated by an English bounty and King George's War (1739-1749) which cut off England's supplies in the French and Spanish West Indies. The crop grew particularly well along the Pee Dee, Black, and lower Waccamaw rivers. The processing of indigo required settling through a series of vats which drew flies and mosquitoes rendering it a fairly offensive labor (Kovacik and Winberry 1987:75). One 1755 account mentions:

indigo has a very disagreeable smell, while making and curing; and the foeces, when taken out of the steeper, if not immediately buried in the ground (for which it is excellent manure,
breeds incredible swarms of flies (Carman 1939:281-290).

Indigo required a fairly major initial investment, estimated at slightly over £2,024 (Gray 1933:1:541). A major benefit, however, was that its production could be integrated with rice on the same plantation. James Governor Glen remarked:

I cannot leave this Subject without observing how conveniently and profitably, as to the Charge of Labor, both Indigo and Rice may be managed by the same Persons; for the labor attending Indigo being over in the Summer Months those who were employed in its may afterwards manufacture Rice in the ensuing Part of the Year, when it becomes most laborious; and after doing all this, they may have some time to spare for sawing Lumber and making Hogshead and other Staves to supply the Sugar Colonies (quoted in Carman 1939:289).

Unfortunately, indigo was "one of those rank weeds like tobacco, which not only exhaust the substance of the earth, but require the very best and richest lands" (Carman 1939:281-290).

In 1753 the Winyah Indigo Society was officially organized and named Thomas Lynch, Sr. their first president. This group established a free school, a library, and functioned as a business and social club for members. By the end of the eighteenth century, planters along the Waccamaw, as elsewhere, had abandoned indigo due to a market surplus and a devastation of caterpillars (Winberry 1979:92, 98; Lawson 1972:3-4; see also Huneycutt 1949).

The early economy also depended on navel stores, and to a lesser extend, on salt processing. In 1733 exports from the port of Georgetown included 7,361 barrels of pitch, 1,092 barrels of tar, and 1,926 barrels of turpentine (Bridwell 1982:12; Rogers 1970:46-47). In the mid-1700s shipbuilding was an important Georgetown industry. Bridwell notes that there is evidence of shipbuilding as early 1738 and that by the late 1740s an active industry flourished in the Winyah Bay area (Bridwell 1982:14). By the mid-1750s this industry began to decline as other enterprises developed and the supply of shipwrights declined (Bridwell 1982:16).

Another crop was to have a more enduring and extensive effect on the economic and cultural life of the Waccamaw. Tidal rice culture began here in the 1730s and became the lifeblood of the Waccamaw until the slave system upon which it depended was ended by the Civil War.

George C. Rogers, in his study, The History of Georgetown County, attributes the rise of rice production in the area to four factors: rice cultivation had already been successfully developed in the province, a stable slave labor supply existed, land titles were stable and allowed for the accumulation of large tracts of property, and there were men who were ready to exploit this potential.

Georgetown District was the nation's major rice-growing area. In 1826 Robert Mills observed that in Georgetown:

everything is fed on rice, horses and cattle eat the straw and hogs, fowls, etc. are sustained by the refuse, and man subsists upon the marrow of the grain The most valuable lands in the district are those called the tide lands The yield of these lands is immense ... they average three barrels or 2000 pounds to the acre (Mills 1972 [1826]:558).

The early history of rice is discussed by Clowse (1971:125-132) and Doar (1936). Although the records of rice exportation are vague, they do indicate that production increased dramatically after 1705 (see Clowse 1971:167-168 for additional discussion). In the late Colonial period rice profitability also increased. Perkins observes that:
yields were from 2 to 4 barrels per acre, and most plantations had 2 or 3 acres under
 cultivation for each field hand. Based on an average price of £2.3 ($150) per barrel from 1768
to 1772, slaves generated revenues annually of from £9.2 up to £27.6 ($600-$1,800), with
around £15 ($975) probably the average figure (Perkins 1980:58).

Although most of the rice production figures are developed from shipping out of Charleston, Bridwell
mentions that 322 barrels of rice were shipped out of Georgetown itself in 1733 (Bridwell 1982:12). In 1731,
the closest year for comparison, 48,238 barrels of rice were shipped from Charleston (Clowse 1971:Table III).
The low figure for the Georgetown port is probably the result of rice being shipped from Georgetown to
Charleston by small coasting vessels, with the information not included in the official shipping totals.

In 1840 Georgetown District produced 45 percent of the national rice crop. Between 1850 and 1860,
production peaked. In 1850, 46,765,040 pounds of rice were produced in Georgetown County. By 1860, South
Carolina produced nearly 64 percent of the total United States rice crop and one-half of the state's crop was
grown in Georgetown District. The average yield on Georgetown plantations in 1860 was 1,568 lbs. per acre.
Prices ranged from 2.0 to 4.3 cents per pound in the 1850s (Easterby 1945:36; Kovacik 1979:49).

Profits on rice plantations during the nineteenth century were variable. Governor Robert Francis
Withers Allston reported in 1854 that "the profits of a rice plantation of good size and locality are about 8
percent per annum, independent of the privileges and perquisites of the plantation residence" (Easterby
1945:37). Peter Coclanis (1989:134-141) argues that while the annual net rate of return on rice cultivation was
around 25 percent in the 1760s, it fell to an astounding -28 percent by 1859. Regardless, the plantation system
was run almost entirely on credit, paying off each past year's indebtedness with the sale of the new crop.
Although the Georgetown rice economy was in a healthy, expanding condition in the antebellum years, the
planter's capital was constantly being invested in land and slaves (Sellers 1934:55-56). R.F.W. Allston was one
of the district's leading slave owners with nine plantation totalling over 6,000 acres. However, in 1859, he
replied to the Blue Ridge Railroad Commission that he was unable to invest in the railroad:

I have no funds to invest. All that I am worth lies in South Carolina and is invested in land
and negroes; the annual income from which is pledged before it is realized (Easterby
1941:162).

Large plantations were the rule. The demand for the limited prime coastal lands forced up land values
and pushed out marginal planters. By the early 1800s a hierarchy had developed based upon distance from
the sea. By 1850, 99 large planters (planters who harvested more than 100,000 pounds each) produced 98% of the
District's total rice crop (Rogers 1970:253; Lawson 1972:8).

Because of this reliance on slave labor, Georgetown District had the highest percentage of slaves in
South Carolina. From 1810 to 1850, slaves made up 85% of the District's total population and accounted for
85% of the population in 1860 (Rogers 1970:328, 343).

The planters of Waccamaw Neck were a small aristocratic group, closely knit by ties of blood as well
as common interest. They were rich, even by standards of most of South Carolina's planters, and lived in a
luxurious style. In 1839 planters along the Waccamaw, the Pee Dee, the Black, the Sampit, and Winyah Bay
formed the Planters Club on the Pee Dee. In 1845 the men formed another organization, the Hot and Hot
Fish Club, for "convivial and social intercourse" (Rogers 1970:228, 196).

The Civil War devastated Georgetown's economy. One popular journal stated, "no other part of the
United States knows so well as the Rice Coast what defeat in war can mean, for nowhere else in this country
has a full-blown and highly developed civilization perished so completely" (Saas 1941:108). Perhaps no area
of the state suffered more economic and social damage than All Saints Parish.
Minimal documentation is available concerning the activities of the Waccamaw plantation freedmen following the war. There were some cases of looting and pillaging of the plantation homes, the "buckra houses." At first, some freedmen stayed on the confiscated plantations and worked under supervision of the Freedmen's Bureau. After restoration of the plantations, they signed work agreements with their former masters or other plantation owners whereby they were paid a set fee at the end of the planting season. Others turned from the rice fields to the burgeoning Georgetown timber industry for work. The majority of former slaves, it appears, remained on Waccamaw Neck. Here they could find ready food in the river and sea, and were among old friends and family. Too, the geographic isolation of the Neck may have reduced the travel incentive. Elsewhere small villages of freedmen apparently were formed, with the Moyd settlement on Pennyroyal Road perhaps one example. Travel to Charleston, difficult and somewhat dangerous, required a boat and/or several ferry crossings (Lawson 1972:23; Genevieve Chandler Peterkin, personal communication, 1987; R.F.W. Allston Family Papers, South Caroliniana Library; see also the Freedmen's Bureau Reports for Georgetown County, South Carolina Department of Archives and History).

The blockade and occupation of Georgetown in 1862 threatened the plantation system. Union troops seized rice as contraband and set fire to rice fields as they went up the Waccamaw. Some planters continued trying to grow crops, but an estimated 75 percent of the county's plantation families moved to the interior of the state. The war was followed by successive crop failures in 1865, 1866, and 1867. Between 1860 and 1870, South Carolina's rice production fell nearly 73 percent. In Georgetown County, the 1879 crop was approximately 10% of the 1860 crop (Kovacik 1979:55). Financing next year's crop became a critical concern for planters who had traditionally depended on their factors for this service.

During this period, a number of things happened to land ownership: bankruptcies were common, the Freedmen's Bureau confiscated some lands and resettled former slaves on them, and other lands were sold at auction for nonpayment of loans or taxes. Companies such as Lachicotte and Sons and the Guendalos Company tried to profitably combine planting and rice milling to reduce operational costs. Efforts such as these managed to keep the rice industry alive until the turn of the century.

By the late nineteenth century Northern investors were buying up the old Waccamaw rice plantations. Having little, if any, interest in rice cultivation, many of these buyers used the plantations as game preserves for sport hunting. The loss of a stable and experienced work force, the competition from western rice lands, and finally the hurricanes of 1893, 1894, 1898, 1906, 1910, and 1911 that wrecked the dike system, ended the long history of rice production on the Georgetown rivers (Devereaux 1976:254-255; Lawson 1972:22-23, 409; Smith 1913:80). Elizabeth Allston Pringle of Chicora Wood wrote in 1906:

I fear the storm drops a dramatic, I may say tragic, curtain on my career as a rice planter. The rice plantation, which for years gave me the exhilaration of making a good income myself, is a thing of the past now -- the banks and trunks have been washed away, and there is no money to replace them (Rogers 1970:488-489).

Today most of the approximately forty plantations that dotted the Waccamaw have or are being developed into residential areas for permanent or seasonal residents and into commercial districts to service these developments.
FIELD METHODS

Pending the actual survey the entire corridor was evaluated as having moderate archaeological potential, based on its proximity to the Sampit River and the absence of good site data for this area of the County. Consequently, the initially proposed field techniques involved the placement of shovel tests at 100 foot intervals along the centerline of the project corridor, with all fill being screened through ¼ inch mesh. Only one transect was proposed, given the relatively narrow corridor and the proximity of a dirt access road which would provide good surface visibility for a supplemental pedestrian survey.

Should sites be identified by shovel testing, further tests would be used to obtain data on site boundaries, artifact quantity and diversity, site integrity, and temporal affiliation. The information required for completion of South Carolina Institute of Archaeology and Anthropology site forms would be collected and photographs would be taken, if warranted in the opinion of the field investigators.

As previously mentioned, all soil would be screened through ¼ inch mesh, with each test numbered sequentially. Each test would measure about 1 foot square and would normally be taken to a depth of at least 1 foot. All cultural remains would be collected, except for shell, mortar, and brick, which would be quantitatively noted in the field and discarded. Notes would be maintained for profiles at any sites encountered.

These field methods were put into effect with several deviations. Although the substation was not part of this project (and is not Santee-Cooper property), since the survey began on this western end of the project, a very quick pedestrian survey was conducted. Surface visibility was excellent since the substation had already been cleared (the Santee-Cooper corridor had not been cleared, although it was well staked). No cultural remains were found on the Santee Co-op substation.

The formal survey began, as mentioned, on the western end on relatively dry ground and shovel tests were placed at 100 foot intervals with the fill being screened for the first 500 feet of the survey. For the next 500 feet the corridor passed through an area which had been extensively graded by 3V Chemical for future use as a parking lot (this area is just visible in the background of Figure 4, taken from the higher woods looking to the east-southeast). Initial shovel tests in this area revealed the loss of at least 3 feet of soil. In addition, broad expanses of standing water up to 0.5 foot deep were encountered. Shovel tests were either not dug, or the soil was examined by trowel, since it could not be sifted. Shovel tests at 100 foot intervals were resumed as the corridor turned south along the gas pipeline. Although the soil profiles were intact, this area also exhibited very poorly drained soils and none of the test could be screened — all had to be trowel sorted. As the corridor turned to the east, shovel tests were dug at 200 foot interval. The earlier tests seemed adequate to confirm that this area was unlikely to produce archaeological remains and could safely be classified as a low probability area. Although the potential of cultural remains was low, it was still appropriate to examine the corridor. At the extreme eastern end, near the existing transmission lines, the soils became somewhat drier and the last 400 feet of the corridor was subjected to shovel testing at 100 foot intervals.

In addition to the shovel tests at 200 foot intervals along the central portion of the corridor, a pedestrian survey of the adjacent dirt access road was also conducted (Figure 3 shows this road and the adjacent woods). This provided additional coverage of the project area, since the road's surface visibility ranged from 100% to 75% (portions had gravel mixed with the soil). It also helped extend the coverage off the centerline.
As previously mentioned, this survey revealed that the corridor passes through areas of very wet, reduced soils. Such areas typically exhibit very low potential for the recovery of archaeological remains and none were encountered in the course of this survey.

Since no sites were encountered, the field notes associated with this project (which consist only of the shovel test narrative previously described) have been filed, along with color photographic prints, in Chicora's files.
RESULTS AND CONCLUSIONS

As a result of the archaeological survey of the proposed 3V Chemical 115kV Tap Line, no archaeological remains were identified. The corridor was found to be generally low and poorly drained, with heavily reduced soils found in 90% of the shovel tests. Better drained soils were found only at either end of the corridor, but even in these areas the soils were seasonally wet. Of perhaps equal importance to prehistoric site locations, there is no nearby source of fresh water and there are no sandy ridges overlooking lower swales or swamp areas.

Based on the results of this study, and given the poor drainage in the project area, it is very unlikely that sites will be found on the proposed corridor. No additional archaeological investigation is recommended.

Although no sites were identified during the survey, it is possible that archaeological remains may be encountered on the corridor during construction. Construction crews should be advised to report any discoveries of concentrations of artifacts (such as bottles, ceramics, or projectile points) or brick rubble to the project engineer, who should in turn report the material to the South Carolina State Historic Preservation office or to the client's archaeologist. No construction should take place in the vicinity of these late discoveries until they have been examined by an archaeologist.
REFERENCES CITED

Adams, Natalie

Anderson, David G. and Trish Logan

Bridwell, Ronald E.
1982 'That We Should Have A Port': A History of the Port of Georgetown, South Carolina 1732-1865. Georgetown County Chamber of Commerce, Georgetown.

Brooks, Mark, D.J. Colquhoun, J.G. Brown, and P.A. Stone

Carman, Harry J., editor

Charles, Tommy

Clowse, Converse D.

Coclanis, Peter A.

Coe, Joffre L.

Crawford, Robert G.

Devereaux, Anthony
Doar, David

Drucker, Lesley

Easterby, James H.

Espenshade, Christopher T. and Paul E. Brockington, Jr.
1989 *An Archaeological Study of the Minim Island Site: Early Woodland Dynamics in Coastal South Carolina*. Brockington and Associates, Atlanta, Georgia.

Fogg-Amed, Erika

Goodyear, Albert C., III, James L. Michie, and Tommy Charles

Gray, Lewis
1933 *History of Agriculture in the Southern United States to 1860*. Carnegie Institution Publication 430, Gloucester, Massachusetts.

Hacker, Debi and Michael Trinkley

Huneycutt, Dwight J.

Kovacik, Charles F.

Kovacik, Charles F. and John J. Winberry

Lawson, Dennis T.
1972 "No Heir To Take Its Place." The Georgetown County Historical Commission, Georgetown, South Carolina.

Larsen, Clark S. and David H. Thomas
Loftfield, Thomas C.
1976 *A briefe and true report...: An Archaeological Interpretation of the Southern North Carolina Coast*. Ph.D. dissertation, Department of Anthropology, University of North Carolina, Chapel Hill.

Michie, James L.
1977 *Early Man in South Carolina*. Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

Michie, James and Jay Mills

Miller, Carl
1950 An Analysis and Interpretation of the ceramic remains from a number of sites in Horry County, S.C. *American Antiquity* 15(3):254-258.

Mills, Robert

Perkins, Edwin J.

Phelps, David S.
1980 *Archaeological Salvage of an Ossuary at the Baum Site*. Archaeological Laboratory, East Carolina University, Greenville, North Carolina.

1982 A Summary of Colington Phase Sites in the Tidewater Zone of North Carolina. Archaeology Laboratory, East Carolina University, Greenville, North Carolina.

Rathbun, Ted

Rogers, George C., Jr.

Saas, Herbert Ravenel

Sellers, Leila

Smith, Henry A.M.
1913 Baronies of South Carolina. South Carolina Historical Magazine 14:61-80.

Smith, Marvin T.

South, Stanley
1960a An Archaeological Survey of Southeastern North Carolina. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

1960b An Archaeological Survey of Two Islands on the White Oak River. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

1962 Exploratory Excavation of the McFayden Mound. Ms. on file, Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

South, Stanley and Michael Hartley

Stuckey, Benjamin N.
Trinkley, Michael

Trinkley, Michael, editor

Trinkley, Michael, S. Homes Hogue, Martha Zierden, and Jack H. Wilson

Walthall, John A.

Wilson, Homes Hogue

Winberry, John J.

Zierden, Martha A. and Jeanne A. Calhoun