CULTURAL RESOURCES SURVEY OF THE LAKE RIDGE 115kV TRANSMISSION PROJECT, HORRY COUNTY, SOUTH CAROLINA

Prepared By:
Michael Trinkley, Ph.D., RPA
and
Nicole Southerland

Prepared For:
Mr. Tommy L. Jackson
Central Electric Power Cooperative
P.O. Box 1455
Columbia, SC 29202

CHICORA RESEARCH CONTRIBUTION 505

Chicora Foundation, Inc.
PO Box 8664
Columbia, SC 29202-8664
803/787-6910
www.chicora.org

December 22, 2008

This report is printed on permanent paper ∞
This study reports on an intensive cultural resources survey of an approximately 0.6 mile corridor and 1.98 acre substation in Horry County, South Carolina. The work was conducted to assist Central Electric Power Cooperative comply with Section 106 of the National Historic Preservation Act and the regulations codified in 36CFR800.

The corridor is to be used by Central Electric Power Cooperative for the construction of a transmission line, which will connect a Santee Cooper line to a new substation. The topography is low and flat with no distinct ridge tops. The proposed route will require the clearing of the corridor, followed by construction of the proposed transmission line and substation. These activities have the potential to affect archaeological and historical sites that may be in the project corridor. For this study an area of potential effect (APE) 0.5 mile around the proposed transmission project was assumed.

An investigation of the archaeological site files at the S.C. Institute of Archaeology and Anthropology identified two previously recorded sites (38HR172 and 38HR175) in the project APE. Site 38HR172 is an Early Woodland and late nineteenth to twentieth century scatter while 38HR175 is a twentieth century scatter. Both sites have been determined not eligible for the National Register of Historic Places.

The Archsite GIS was consulted for any previously recorded architectural sites. Two sites (060-0063 and 060-0064) were identified. Even though a 1988 county-wide architectural survey has been performed, the GIS showed these two structures as not evaluated and having no information.

The archaeological survey of the corridor incorporated shovel testing at 100-foot intervals along the center line of the 75-foot right-of-way, which was marked by stakes. All shovel test fill was screened through ¼-inch mesh with a total of 32 shovel tests excavated along the corridor with four shovel tests excavated in the substation area (which had already been cleared and filled at the time of the survey).

As a result of these investigations no sites were identified. This is likely the result of the lack of any ridge tops and the distance from a permanent water source.

A survey of public roads within a 0.5 mile of the proposed undertaking was conducted in an effort to identify any architectural sites over 50 years old that also retained their integrity. No such sites were found. The previously identified structures were revisited and rephotographed. Structure 060-0063 is no longer present and 060-0064 is recommended not eligible for the National Register of Historic Places. Another structure (060-0503), which had been recorded during a 2000 survey but not placed on the GIS, was also revisited.

Finally, it is possible that archaeological remains may be encountered in the project area during clearing activities. Crews should be advised to report any discoveries of concentrations of artifacts (such as bottles, ceramics, or projectile points) or brick rubble to the project engineer, who should in turn report the material to the State Historic Preservation Office or to Chicora Foundation (the process of dealing with late discoveries is discussed in 36CFR800.13(b)(3)). No construction should take place in the vicinity of these late discoveries until they have been examined by an archaeologist and, if necessary, have been processed according to 36CFR800.13(b)(3).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>5</td>
</tr>
<tr>
<td>Physiography</td>
<td>5</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>5</td>
</tr>
<tr>
<td>Floristics</td>
<td>6</td>
</tr>
<tr>
<td>Climate</td>
<td>7</td>
</tr>
<tr>
<td>Prehistoric and Historic Synopsis</td>
<td>9</td>
</tr>
<tr>
<td>Previous Research</td>
<td>9</td>
</tr>
<tr>
<td>Prehistoric Overview</td>
<td>9</td>
</tr>
<tr>
<td>Historic Synopsis</td>
<td>13</td>
</tr>
<tr>
<td>Research Methods and Findings</td>
<td>17</td>
</tr>
<tr>
<td>Archaeological Field Methods and Findings</td>
<td>17</td>
</tr>
<tr>
<td>Architectural Survey</td>
<td>17</td>
</tr>
<tr>
<td>Site Evaluation and Findings</td>
<td>18</td>
</tr>
<tr>
<td>Conclusions</td>
<td>21</td>
</tr>
<tr>
<td>Sources Cited</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure
1. Project vicinity in Horry County 1
2. Project corridor and previously identified archaeological and architectural sites 2
3. Portion of the corridor adjacent to a field and ditch 5
4. Portion of a mixed pine and hardwood forest along the corridor 6
5. Generalized cultural sequence for South Carolina 10
6. Portion of Mills’ Atlas showing the project vicinity 13
7. Portion of the 1918 Horry County Soil Survey showing the project area 15
8. Portion of the 1939 General Highway and Transportation Map of Horry County 16
9. View of shovel testing at the substation lot, which had already been cleared 17
10. View of the transmission route through the landscaped area of a new CVS 18
11. Topo map showing the three recorded architectural sites 19
12. View of Structure 060-0064 20
13. View of Structure 060-0503 20
INTRODUCTION

This investigation was conducted by Dr. Michael Trinkley of Chicora Foundation, Inc. for Mr. Tommy L. Jackson of Central Electric Power Cooperative. The work was conducted to assist Central Electric Power Cooperative comply with Section 106 of the National Historic Preservation Act and the regulations codified in 36CFR800.

The project consists of a 0.6 mile corridor and 1.98 acre lot to be used for a 115kV transmission line and substation in southeastern Horry County (Figure 1). The project runs approximately east-west between the proposed substation and a proposed Santee Cooper transmission line on the east side of SC544.

The proposed corridor, as previously mentioned, is intended to be used as a transmission line. Landscape alteration, primarily clearing, and construction, including erection of poles, will damage the ground surface and any archaeological resources that may be present in the survey area.

Construction and maintenance of the transmission line and substation may also have an impact on historic resources in the project area. The project will not directly affect any historic structures (since none are located on the survey corridor), but the completed facility may detract from the visual integrity of historic properties, creating what many consider discordant surroundings. As a result, this architectural survey uses an area of potential effect (APE) about 0.5 mile radius around the proposed survey corridor.

This study, however, does not consider...
any future secondary impact of the project, including increased or expanded development of this portion of Horry County.

We were requested by Mr. Tommy L. Jackson of Central Electric Power Cooperative to conduct a cultural resources survey for the project on November 5, 2008.

These investigations incorporated a review of the site files at the South Carolina Institute of Archaeology and Anthropology. As a result of that work, two archaeological sites (38HR172 and 38HR175) were found within a 0.5 mile area of potential effect (APE). Site 38HR172 is an Early Woodland and late nineteenth to twentieth century scatter while 38HR175 is a twentieth century scatter. Both site have been determined not eligible for the National Register of Historic Places.

The Archisite GIS was consulted to check for any NRHP buildings, districts, structures, sites, or objects in the study area. Two sites (060-0063 and 060-0064) were identified. Even though a 1988 county-wide architectural survey (Utterback 1988) has been performed, the GIS showed these two structures as not evaluated and having no information.

Archival and historical research was limited to a review of secondary sources available in the Chicora Foundation files.

The archaeological survey was conducted on December 18, 2008 by Ms. Nicole Southerland and Ms. Ashley Guba under the direction of Dr. Michael Trinkley.

Figure 2. Project corridor and previously identified archaeological and architectural sites (basemap is USGS Bucksville 7.5').
The architectural survey of the APE, designed to identify any structures over 50 years in age that retain their integrity and were potentially eligible for the National Register of Historic Places, revealed no such structures. The two previously recorded sites were examined with 060-0063 no longer standing. Another structure within the APE, recorded as 060-0503, was identified during a 2000 survey by Chicora Foundation (Trinkley 2000), but was recommended not eligible for the National Register. This structure was not listed on the Archsite GIS.

Report production was conducted at Chicora’s laboratories in Columbia, South Carolina from December 22-23, 2008. The only photographic materials associated with this project are digital images, which are not archival, and will be retained for only 90 days.
NATURAL ENVIRONMENT

Physiography

The project area is situated in southeastern Horry County, less than 0.5 mile east of the Waccamaw River, which dominates the landscape, meandering to form large cutoffs or lakes, as well as much swamp. The level topography in the region is interrupted by only occasional marsh sloughs and small wetland depressions.

In general, the topography of the study tract is level, with only a slight elevation change toward the small drainage on the property. The Waccamaw essentially bisects the county into east and west halves and drains numerous swamps between the river and the Atlantic Ocean. On a regional scale the topography slopes either southeast toward the Waccamaw or northwest toward smaller drainages such as Maple Swamp.

Horry County is bounded to the north by Brunswick and Columbus counties, North Carolina, to the east by the Atlantic Ocean, to the south by Georgetown County, and to the west by Dillon and Marion counties. It lies within the Lower Coastal Plain, which is made up of fluvial deposits that contain varying amounts of sand, silt, and clay (Dudley 1986). This is also the area known as the Atlantic Coast Flatwoods which extends from the sea shore inland about 30 to 70 miles. The area is characterized by broad flats and depressions. While there are areas of well drained soils, much of the flatwoods consist primarily of poorly drained soils with clay subsoils, especially near the coast (Ellerbe 1974:18).

Elevations may range from sea level to about 100 feet above mean sea level in the Lower Coastal Plain. In the project area there are no areas where the land is higher than about 20 feet above mean sea level (AMSL), and some of the area is lower (around 10 feet) toward the drainage at the western end of the corridor. A noticeable characteristic of this physiographic area is how gradually the flat lands seem to grade into freshwater marshes, savannahs, or swamps.

Geology and Soils

The geology of the Lower Coastal Plain has been well described by Cooke (1936) who notes that from the Cape Fear River in North Carolina to Winyah Bay in South Carolina, the coast forms a “great arc scooped out by waves” (Cooke 1936:4). This area has been described by Brown (1975) as being an arcuate strand. In this area salt marshes are poorly developed or absent.

Figure 3. Portion of the corridor adjacent to a field and ditch.
and few tidal inlets breach the coast (Smith 1933:20-21). The situation is the result of an erosional history about 100,000 years ago. In general, however, the geology of the Lower Coastal Plain is less complex than that of other sections of the state.

As previously mentioned, the area is dominated by fluvial deposits of unconsolidated sands and clays. Rocks are almost totally absent from the area, although Mills (1972[1826]:584) does note that some compact shell limestone was found on the Waccamaw between Gaul’s Ferry and Bear Bluff.

Soils were primarily formed during the Pleistocene epoch and several terraces were deposited (Dudley 1986:85). The project vicinity is characterized by the Yauhannah-Ogeechee-Bladen Association (Dudley 1986). This association, which occurs on nearly level to gently sloping soils, consists of moderately well drained and poorly drained soils with a loamy or sandy surface and a loamy to clayey subsoil.

The survey area includes three soil series – Yauhannah fine sandy loam, Yemassee loamy fine sand, and Ogeechee loamy fine sand. The moderately well drained Yauhannah soils comprise about 74% of the project area. This soils has an Ap horizon of very dark grayish brown (10YR3/2) loamy fine sand to a depth of 0.5 foot over a yellowish brown (10YR5/4) loamy fine sand that extends to a about 0.8 foot in depth.

The somewhat poorly drained Yemassee Series accounts for 21% of the project area. This soil has an A horizon of black (10YR2/1) loamy fine sand to 0.6 foot in depth over a pale brown (10YR5/3) loamy fine sand to 1.0 foot in depth. The poorly drained Ogeechee soils, which account for 5% of the survey area, have an A horizon of very dark gray (10YR3/1) loamy fine sand to 0.7 foot in depth over a dark grayish brown (10YR4/2) sandy clay loam to 1.9 feet in depth.

In 1826 Robert Mills commented that soil was rich and productive adjacent to Horry’s rivers. Even the uplands were well suited for cotton with their light sandy soil underlaid by clay. But he commented that a great deal of swamp land was found in the district, “fit only for cattle ranges” (Mills 1972[1826]:585). Edmund Ruffin, who managed to visit much of South Carolina’s coast in the mid-1840s, never sought to go to Horry, commenting that:

I would have gone to Horry, which is called the “dark corner” of the state, but for having no expectation of finding anyone acquainted with or feeling interested in the objects of explorations (Mathew 1992:215).

Floristics

Vegetation in Horry County is
characterized in relation to the previously broad topographic patterns of poorly drained floodplains and lowlands, and the well drained uplands.

The vegetation in Horry County has been classified by Küchler (1964) as part of the Oak-Hickory-Pine forest, based on potential natural vegetation. This would consist of medium tall to tall forests of broadleaf deciduous and needleleaf ever-green trees. More specifically, however, the floodplains are covered by mixed hardwoods, including bald cypress, tupelo gum, and black gum. Less water tolerant trees, such as pines, occur on the uplands or on better drained slopes. Also found in the bottomlands, floodplains, and Carolina bays are red maple, ash, water oak, elm, and sweet gum. On the better drained uplands pine dominates, with loblolly and longleaf pines being indigenous and the slash pine introduced.

In 1826 Mills in describing the Horry District vegetation, notes:

The long leaf pine abounds, also the cypress, live oak, water oak, white oak, &c. The fruit trees are, peaches, apples, pears, plums, cherries, figs; besides strawberries, which grow wild, whortleberries, &c. The forest trees begin to bud in the latter part of March, and the fruit trees in April. The pine and cypress are mostly used for buildings (Mills 1972[1826]:582).

Climate

Elevation, latitude, and distance from the coast work close together to affect the climate of South Carolina, although Horry is clearly dominated by its maritime location. Much of the weather is controlled by the proximity of the Gulf Stream, about 50 miles offshore. In addition, the more westerly mountains block or moderate many of the cold air masses that flow across the state from west to east. Even the very cold air masses that cross the mountains are warmed by compression before the descent on the Coast.

As a result, the climate of Horry County is temperate. The winters are relatively mild with a mean temperature of 48°F and the summers are very warm and humid, with a mean temperature of 79°F and average humidity of 60%. Rainfall in the amount of about 51 inches is good for a broad range of crops. About 31 inches (or 60% of the total) occurs during the growing season. Until recently, periods of drought have not been common. Of course, there have been statewide droughts, such as the one in 1845, but more often the threat to Horry crops was flooding. Major floods have occurred in 1855, 1924, 1928, 1959, 1961, and 1973, with the September 1928 flood the largest known, reaching a stage of 12.75 feet above mean sea level (U.S. Army Corps of Engineers 1973:9).

The average growing season is about 234 days, although early freezes in the fall and late frosts in the spring can reduce this period by as much as 30 or more days (Dudley 1986:97). Consequently, most cotton planting did not take place until early May, avoiding the possibility that a late frost would damage the young seedlings.
PREHISTORIC AND HISTORIC SYNOPSIS

Previous Research

Horry has received rather spotty archaeological attention. Derting and his colleagues, for example, list only 67 reports associated with the county, with 41 of these (or 61%) representing highway or sewer surveys (Derting et al. 1991). Although dated, this indicates that the attention has been focused on relatively narrow, contained corridors, with only minor attention devoted to the area’s rich prehistoric and protohistoric resources.

Considerable, primarily unpublished, research took place in the Myrtle Beach area during the 1960s at the Ellsworth Site by Erika Fogg-Amed, then a student of Reinhold Englemeyer at USC-Conway. Several test units were placed within the site which yielded Stallings, Thom’s Creek, Hanover, and Cape Fear sherds, as well as a Morrow Mountain component (Fogg-Amed n.d. a). No site boundaries were established and, in fact, no site form has ever been filed.

Fogg-Amed also tested the “Coates Site,” located about 10 miles north of Myrtle Beach on a high bluff overlooking a freshwater pond. Testing at this site yielded a dense shell midden that produced only lithic debitage (Fogg-Amed n.d. b). Again, no site form was filed.

Closer to the survey corridor at least two project areas have been surveyed. These are compliance reports on road improvements and a school (Martin et al. 1987; Trinkley 2000).

Prehistoric Overview

The Paleoindian period, lasting from 12,000 to 8,000 B.C., is evidenced by basally thinned, side-notched projectile points; fluted, lanceolate projectile points; side scrapers; end scrapers; and drills (Coe 1964; Michie 1977; Williams 1968). The Paleoindian occupation, while widespread, does not appear to have been intensive. Artifacts are most frequently found along major river drainages, which Michie interprets to support the concept of an economy “oriented towards the exploitation of now extinct mega-fauna” (Michie 1977:124).

Unfortunately, little is known about Paleoindian subsistence strategies, settlement systems, or social organization. Generally, archaeologists agree that the Paleoindian groups were at a band level of society (see Service 1966), were nomadic, and were both hunters and foragers. While population density, based on the isolated finds, is thought to have been low, Walthall suggests that toward the end of the period, “there was an increase in population density and in territoriality and that a number of new resource areas were beginning to be exploited” (Walthall 1980:30).

The Archaic period, which dates from 8000 to 2000 B.C., does not form a sharp break with the Paleoindian period, but is a slow transition characterized by a modern climate and an increase in the diversity of material culture. Associated with this is a reliance on a broad spectrum of small mammals, although the white tailed deer was likely the most commonly exploited mammal. The chronology established by Coe (1964) for the North Carolina Piedmont may be applied with little modification to the South Carolina coastal plain and piedmont. Archaic period assemblages, characterized by corner-notched and broad stemmed projectile points, are fairly common, perhaps because the swamps and drainages offered especially attractive ecotones.
In the Coastal Plain of the South Carolina, there is an increase in the quantity of Early Archaic remains, probably associated with an increase in population and associated increase in the intensity of occupation. While Hardaway and Dalton points are typically found as isolated specimens along riverine environments, remains from the following Palmer phase are not only more common, but are also found in both riverine and interriverine settings. Kirks are likewise common in the coastal plain (Goodyear et al., 1979).

The two primary Middle Archaic phases found in the coastal plain are the Morrow Mountain and Guilford (the Stanly and Halifax complexes identified by Coe are rarely encountered). Our best information on the Middle Woodland comes from sites investigated west of the Appalachian Mountains, such as the work in the Little Tennessee River Valley. The work at Middle Archaic river valley sites, with their
evidence of a diverse floral and faunal subsistence base, seems to stand in stark contrast to Caldwell’s Middle Archaic “Old Quartz Industry” of Georgia and South Carolina, where axes, choppers, and ground and polished stone tools are very rare.

The Late Archaic is characterized by the appearance of large, square stemmed Savannah River projectile points (Coe 1964). These people continued the intensive exploitation of the uplands much like earlier Archaic groups. The bulk of our data for this period, however, comes from work in the Uwharrie region of North Carolina.

The Woodland period begins, by definition, with the introduction of fired clay pottery about 2000 B.C. along the South Carolina coast (the introduction of pottery, and hence the beginning of the Woodland period, occurs much later in the Piedmont of South Carolina). It should be noted that many researchers call the period from about 2500 to 1000 B.C. the Late Archaic because of a perceived continuation of the Archaic lifestyle in spite of the manufacture of pottery. Regardless of terminology, the period from 2500 to 1000 B.C. is well documented on the South Carolina coast and is characterized by Stallings (fiber-tempered) pottery. The subsistence economy during this early period was based primarily on deer hunting and fishing, with supplemental inclusions of small mammals, birds, reptiles, and shellfish.

Like the Stallings settlement pattern, Thom’s Creek sites are found in a variety of environmental zones and take on several forms. Thom’s Creek sites are found throughout the South Carolina Coastal Zone, Coastal Plain, and up to the Fall Line. The sites are found into the North Carolina Coastal Plain, but do not appear to extend southward into Georgia.

In the Coastal Plain drainage of the Savannah River there is a change of settlement, and probably subsistence, away from the riverine focus found in the Stallings Phase (Hanson 1982:13; Stoltman 1974:235-236). Thom’s Creek sites are more commonly found in the upland areas and lack evidence of intensive shellfish collection. In the Coastal Zone large, irregular shell middens; small, sparse shell middens; and large “shell rings” are found in the Thom’s Creek settlement system.

The Deptford phase, which dates from 1100 B.C. to A.D. 600, is best characterized by fine to coarse sandy paste pottery with a check stamped surface treatment. The Deptford settlement pattern involves both coastal and inland sites.

Inland sites such as 38AK228-W, 38LX5, 38RD60, and 38BM40 indicate the presence of an extensive Deptford occupation on the Fall Line and the Coastal Plain, although sandy, acidic soils preclude statements on the subsistence base (Anderson 1979; Ryan 1972; Trinkley 1980b). These interior or upland Deptford sites, however, are strongly associated with the swamp terrace edge, and this environment is productive not only in nut masts, but also in large mammals such as deer. Perhaps the best data concerning Deptford “base camps” comes from the Lewis-West site (38AK228-W), where evidence of abundant food remains, storage pit features, elaborate material culture, mortuary behavior, and craft specialization has been reported (Sassaman et al. 1990:96-98).

Throughout much of the Coastal Zone and Coastal Plain north of Charleston, a somewhat different cultural manifestation is observed, related to the “Northern Tradition” (e.g., Caldwell 1958). This recently identified assemblage has been termed Deep Creek and was first identified from northern North Carolina sites (Phelps 1983). The Deep Creek assemblage is characterized by pottery with medium to coarse sand inclusions and surface treatments of cord marking, fabric impressing, simple stamping, and net impressing. Much of this material has been previously designated as the Middle Woodland “Cape Fear” pottery originally typed by South (1976). The Deep Creek wares date from about 1000 B.C. to A.D. 1 in North Carolina, but may date later in
South Carolina. The Deep Creek settlement and subsistence systems are poorly known, but appear to be very similar to those identified with the Deptford phase.

The Deep Creek assemblage strongly resembles Deptford both typologically and temporally. It appears this northern tradition of cord and fabric impressions was introduced and gradually accepted by indigenous South Carolina populations. During this time, some groups continued making only the older carved paddle stamped pottery, while others mixed the two styles, and still others (and later all) made exclusively cord and fabric stamped wares.

The Middle Woodland in South Carolina is characterized by a pattern of settlement mobility and short-term occupation. On the southern coast it is associated with the Wilmington phase, while on the northern coast it is recognized by the presence of Hanover, McClellanville or Santee, and Mount Pleasant assemblages. The best data concerning Middle Woodland Coastal Zone assemblages comes from Phelps' (1983:32-33) work in North Carolina. Associated items include a small variety of the Roanoke Large Triangular points (Coe 1964:110-111), sandstone abraders, shell pendants, polished stone gorgets, celts, and woven marsh mats. Significantly, both primary inhumation and cremations are found.

On the Coastal Plain of South Carolina, researchers are finding evidence of a Middle Woodland Yadkin assemblage, best known from Coe’s work at the Doerschuk site in North Carolina (Coe 1964:25-26). Yadkin pottery is characterized by a crushed quartz temper and cord marked, fabric impressed, and linear check stamped surface treatments. The Yadkin ceramics are associated with medium-sized triangular points, although Oliver (1981) suggests that a continuation of the Piedmont Stemmed Tradition to at least A.D. 300 coexisted with this Triangular Tradition. The Yadkin series in South Carolina was first observed by Ward (1978, 1983) from the White’s Creek drainage in Marlboro County, South Carolina. Since then, a large Yadkin village has been identified by DePratter at the Dunlap site (38DA66) in Darlington County, South Carolina (Chester DePratter, personal communication 1985) and Blanton et al. (1986) and have excavated a small Yadkin site (389SU83) in Sumter County, South Carolina. Research at 38FL249 on the Roche Carolina tract in northern Florence County revealed an assemblage including Badin, Yadkin, and Wilmington wares (Trinkley et al. 1993:85-102). Anderson et al. (1982:299-302) offer additional typological assessments of the Yadkin wares in South Carolina.

Over the years, the suggestion that Cape Fear might be replaced by such types as Deep Creek and Mount Pleasant has raised considerable controversy. Taylor, for example, rejects the use of the North Carolina types in favor of those developed by Anderson et al. (1982) from their work at Mattassee Lake in Berkeley County (Taylor 1984:80). Cable (1991) is even less generous in his denouncement of ceramic constructs developed nearly a decade ago, also favoring adoption of the Mattassee Lake typology and chronology. This construct, recognizing five phases (Deptford I-III, McClellanville, and Santee I), uses a type variety system.

Regardless of terminology, these Middle Woodland Coastal Plain and Coastal Zone phases continue the Early Woodland Deptford pattern of mobility. While sites are found all along the coast and inland to the Fall Line, shell midden sites evidence sparse shell and artifacts. Gone are the abundant shell tools, worked bone items, and clay balls. Recent investigations at Coastal Zone sites such as 38BU747 and 38BU1214, however, have provided some evidence of worked bone and shell items at Deptford phase middens (see Trinkley 1990).

In many respects, the South Carolina Late Woodland may be characterized as a continuation of previous Middle Woodland cultural assemblages. While outside the Carolinas there were major cultural changes, such as the continued development and elaboration of agriculture, the Carolina groups settled into a
lifeway not appreciably different from that observed for the previous 500 to 700 years (cf. Sassaman et al. 1990:14-15). This situation would remain unchanged until the development of the South Appalachian Mississippian complex (see Ferguson 1971).

The South Appalachian Mississippian period, from about A.D. 1100 to A.D. 1640, is the most elaborate level of culture attained by the native inhabitants and is followed by cultural disintegration brought about largely by European disease. The period is characterized by complicated stamped pottery, complex social organization, agriculture, and the construction of temple mounds and ceremonial centers. The earliest phases include the Savannah and Pee Dee (A.D. 1200 to 1550).

Historic Synopsis

The earliest activity in the Horry County area may have been the Spanish Ayllon movement from Rio Jordon (Cape Fear River) to San Miguel de Gualdape, 45 leagues distant. Some have argued that Fort San Miguel may have been at the mouth of Winyah Bay, although Paul Hoffman has recently suggested the fort was in Beaufort County, South Carolina or Chatham County, Georgia.

While the English settled Charleston in 1670, the northern frontier was ignored, except for the Indian trade, until 1731, when the first Royal Governor of Carolina, Robert Johnson, directed 11 townships to be laid out, including Kingston on the west bank of the Waccamaw. Kingston covered much of Georgetown and Horry counties and by 1734 the town of Kingston, later known as Conwayboro and eventually Conway, was founded. The township, however, was never elevated to a parish, but remained part of the Parish of Prince George, Winyah until 1785. In that year Prince George was divided into four districts and by 1801 Horry District was formally separated from Georgetown (Rogers 1972:9). The designation of “county” was not used until 1868. A variety of townships were established, including Simpson Creek and Little River on the south side of the Waccamaw River.

Prior to the Revolution there were few residents in Kingston and it was not until the late eighteenth century that English, French, Scotch, and Irish settlers began coming into the area. Many settlers in the early nineteenth century came from North Carolina and the northern seaboard states.

In spite of Horry’s coastal plain situation, the area developed along vastly different lines than its southern neighbors Georgetown and Charleston. Horry District was always isolated from the remainder of South Carolina and had much stronger connections with North Carolina (Rogers 1972:3). The major traffic artery was the Waccamaw River and this reliance on river transport did not change until the highway development of the 1930s. Subsistence farming was the main occupation in the early 1800s and the farms were small, specializing in peas, wheat, rice, cotton, and corn, most for home consumption (Rogers 1972:5). Mills notes that the population was,
mostly engaged in cultivating the soil. There are a few mechanics, such as blacksmiths, shoemakers, taylors [sic], halters, etc. (Mills 1972[1826]:583).

For Mills’ Atlas of 1826, the Horry District was surveyed by Harlee in 1820. No settlements are shown in the project corridor (Figure 6). The settlement of Larrimore is located to the south of the project area. The absence of houses surrounding the project area may not so much indicate sparse settlement as it may reflect the subscription basis of Mills’ Atlas. The subsistence farmers of Horry District may either have been unable to subscribe or may have had no need to let others know their location. The 1860 census for Horry District indicates that many of the farmers in Kingston, for example, could neither read nor write, further reducing the benefits of listing in an atlas.

The emphasis on subsistence farming appears to be the result of topography. Only 20% of the land is subject to the type of tidal overflow necessary for wet cultivation of rice. Mills (1972[1826]:581) notes that the river floodplain soil was productive where it could be reclaimed by drainage, while the upland soils were much less productive. This difference in quality is reflected in the prices for the land. Mills states that,

the low land swamps, when secured from the freshets, will sell for 40 or $50 an acre. The uplands are valued at from $4 down to 25 cents per acre (Mills 1972[1826]:581).

Interestingly, the price of “improved farms” ranged from $20 to $50 an acre as late as 1918 (Tillman et al. 1919:340). The few plantations found in Horry District were primarily located in All Saints Parish, east and south of the Waccamaw River. It was from this area that a small quantity of rice was exported throughout the nineteenth century (Rogers 1972:13).

Because the soils of Horry District were not able to support plantation agriculture a unique distribution of population and a very low percentage of slaves were found in the region. Horry County also continued to play a minor role in state politics. The area, prior to the Civil War, was oriented to smaller farmers and never developed an aristocratic plantation society with political and economic power. Most of the farms, including the larger ones, were situated in Kingston Township. The 1860 census indicates that of the 782 farms, 560 were in Kingston (Rogers 1972:12). In 1860, the population was 2,606 and there were only 708 slaves. This ratio of 70% white and 30% blacks has not only remained stable into the twentieth century, but also stands in contrast to Georgetown District where about 12% of the population was white and 88% was black until the 1880 census, when the white population increased to about 20% (Rogers 1972).

By the 1830s, a new industry was competing with farming in the Horry area. Northern immigrants from Maine, coupled with “pine woods speculators” form North Carolina began to exploit the forest products of both the uplands and swamp areas (Tillman et al. 1919:330; Berry 1970; Rogers 1972:14). The Horry District was the leading turpentine producer in South Carolina by 1860, producing products valued at $392,643. The lumber and turpentine industry continued to grow rapidly after the Civil War. Tobacco was introduced about 1850, but was not an important crop until after the Civil War, lead by the Green Sea Township.

Horry District never sided with the radical secessionists, possibly because of the influence of northern immigrants or because of the resentment of the political and economic power of slave owners. In any event, Horry County responded “enthusiastically” to the call for volunteers at the outbreak of the Civil War (Rogers 1972:35).

Horry District saw little involvement in the Civil War, although 925 of the 1,000 men in the voting population volunteered for duty and served (Rogers 1972:35). Fort Randell was
established at Clardy’s Point on the Little River and saw skirmishes in 1863 and 1865. The salt works of Peter Vaught, Sr. at Singleton Swash were raided in April 1864, and in 1865 a Union expedition was led up the Waccamaw to destroy ferries at Bull Creek and Yahannah (Rogers 1972:35-38).

After the Civil War, Horry was part of the Military District of Eastern South Carolina, but the Federal stay was short and by 1866 military troops had left Horry County. This absence of Federal troops continued throughout Reconstruction and the Democrats maintained political control throughout the period. Further, there was no land distribution in Horry County, possibly because there was really no land work distributing (Rogers 1972:47). Following the Civil War a number of changes began to affect the Horry area. Tobacco began to be a more important crop, the first county bank was organized in 1880, the railroad and telegraph arrived in 1887, and in 1889 a regular weekly county newspaper appeared (the Horry Weekly News, which published until 1877). Conwayboro was changed to Conway in 1883 and the only other “major” town continued to be Little River.

The turpentine business boomed in the 1870s and by 1880 there were 21 operators in the county, producing $181,400 annually (Rogers 1972:50). Farming, however, continued to be important. In 1870 there were 1,300 farms averaging 50 acres in size. The major crops were still subsistence items such as corn, sweet potatoes, and rice. Few wage employees were found in Horry (Rogers 1972:58). The Socastee and Little River townships had the richest farms and the five largest farms also produced turpentine in 1870 (Rogers 1972:60). The Grange movement arrived in Horry County relatively late, never organized in many areas, and failed by the late 1870s.

By 1910, the County population had increased to almost 27,000 but there was no town, including Conway, with a population of even 2,500. Conway continued, however, to have strong lumbering and mercantile interests. With the gradual decline of lumbering and the turpentine industry, farming was once again the dominant activity in the county. The period from 1880 to 1910 saw corn acreage increase 140%, cotton acreage increase 90%, and tobacco acreage increase from 19 to 5,347 acres. During the same time rice production fell from 747,689 to 1,210 pounds (Tillman et al. 1919:333). By 1919 the chief money crops were corn, cotton, and tobacco, although corn was largely used to supply the home and fatten stock. After 1895, tobacco began to replace cotton as a prime money crop and by 1910 was “grown more or less generally over a county by small farmers who live on their farms and superintend the work” (Tillman et al. 1919:335).

The 1918 soil survey map shows one structure along the survey corridor (Figure 7). No artifacts were found in this area. Several modern houses have been built along this stretch of road.
and in addition, the road has been improved with a ditch excavated for drainage. The yard areas have been altered for pasture, cultivation, erection of fences, construction, and an existing transmission line.

In the early twentieth century, hogs were the principle source of livestock income. These animals were usually slaughtered in the fall for home use or sale on the local market. Cattle were mostly scrub stock and dairying was neglected. Farm equipment was largely inadequate in the early 1900s and most of the plowing was done with one ox or mule. On many small farms the adequacy of farm equipment did not appreciably improve into the 1940s, when the probate inventory for one small Horry farmer listed only one mule, a one-horse wagon, one disc, four plows, one lot hoes, one guano distributor, a tobacco sprayer, and a corn planter (Trinkley and Caballero 1983:8). Tillman et al. (1919:338) indicate that in the early 1900s plowing was seldom more than 2 to 3 inches deep because of the poor machinery. It is suggested that this lack of equipment was not entirely related to a lack of prosperity, but rather was largely the result of cheap labor. Tillman et al. report that, “negro men receive 75 cents to $1.25 a day . . . while negro

women are paid 50 to 65 cents a day” (Tillman et al. 1919:340).

Horry County, in 1910, had a relatively low rate of farm tenancy. The 1939 General Highway and Transportation Map of Horry County (Figure 8) fails to show any houses on the corridor. In fact, the road on which the corridor follows as shown on the 1918 map fails to appear on this 1939 map. The area is shown to be in wetland.

Tillman et al. (1919:340) indicate that 72.9% of the farms were operated by owners and 27% by tenants. The average size of such farms (each tenancy is classified as a farm) was 117.8 acres. This is contrasted with piedmont Spartanburg, where in 1920 32.1% of the farms were operated by their owners and 67.7% were operated by tenants. In Spartanburg, where cotton was still king, the average farm size was 49.4 acres (Latimer et al. 1924:419). This dichotomy documents the differences between tenancy in the Atlantic Coastal Plain, where there was a low “devotion” to cotton, and in the Black Belt and Upper Piedmont, where cotton was more important, tenancy rates higher, and farm size smaller (see Woofter et al. 1936).
Archaeological Field Methods and Findings

The initially proposed field techniques for the substation lot involved the placement of shovel tests at the four corners of the property. The transmission corridor incorporated shovel testing at 100 foot intervals along the center line of the corridor, which had a right-of-way of 75 feet.

All soil would be screened through ¼-inch mesh, with each test numbered sequentially. Each test would measure about 1 foot square and would normally be taken to a depth of at least 1.0 foot or until subsoil was encountered. All cultural remains would be collected, except for mortar and brick, which would be quantitatively noted in the field and discarded. Notes would be maintained for profiles at any sites encountered.

Should sites (defined by the presence of three or more artifacts from either surface survey or shovel tests within a 50 feet area) be identified, further tests would be used to obtain data on site boundaries, artifact quantity and diversity, site integrity, and temporal affiliation. These tests would be placed at 25 to 50 feet intervals in a simple cruciform pattern until two consecutive negative shovel tests were encountered. The information required for completion of South Carolina Institute of Archaeology and Anthropology site forms would be collected and photographs would be taken, if warranted in the opinion of the field investigators.

A total of four shovel tests were excavated within the substation lot. A total of 32 shovel tests were excavated along the corridor.

Analysis of collections would follow professionally accepted standards with a level of intensity suitable to the quantity and quality of the remains.

Nevertheless, the archaeological survey of the substation lot and transmission corridor failed to identify any remains. This is most likely due to the lack of high land, suitable for habitation and the distance from a permanent water source. In addition, the land as been altered by road improvements, creation of pasture and agricultural lands, and construction (Figure 10).

Architectural Survey

As previously discussed, we elected to use a 0.5 mile area of potential effect (APE). The architectural survey would record buildings, sites, structures, and objects that appeared to have been constructed before 1950. Typical of such projects,
this survey recorded only those which have retained “some measure of its historic integrity” (Vivian n.d.:5) and which were visible from public roads.

For each identified resource we would complete a Statewide Survey Site Form and at least two representative photographs were taken. Permanent control numbers would be assigned by the Survey Staff of the S.C. Department of Archives and History at the conclusion of the study. The Site Forms for the resources identified during this study would be submitted to the S.C. Department of Archives and History.

Site Evaluation and Findings

Archaeological sites would be evaluated for further work based on the eligibility criteria for the National Register of Historic Places. Chicora Foundation only provides an opinion of National Register eligibility and the final determination is made by the lead federal agency, in consultation with the State Historic Preservation Officer at the South Carolina Department of Archives and History.

The criteria for eligibility to the National Register of Historic Places is described by 36CFR60.4, which states:

the quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and

a. that are associated with events that have made a significant contribution to the broad patterns of our history; or

b. that are associated with the lives of persons significant in our past; or

c. that embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

d. that have yielded, or may be likely to yield, information important in prehistory or history.

National Register Bulletin 36 (Townsend et al. 1993) provides an evaluative process that contains five steps for forming a clearly defined explicit rationale for either the site’s eligibility or lack of eligibility. Briefly, these steps are:
• identification of the site’s data sets or categories of archaeological information such as ceramics, lithics, subsistence remains, architectural remains, or sub-surface features;

• identification of the historic context applicable to the site, providing a framework for the evaluative process;

• identification of the important research questions the site might be able to address, given the data sets and the context;

• evaluation of the site’s archaeological integrity to ensure that the data sets were sufficiently well preserved to address the research questions; and

• identification of important research questions among all of those which might be asked and answered at the site.

This approach, of course, has been developed for use documenting eligibility of sites being nominated to the National Register of Historic Places where the evaluative process must stand alone, with relatively little reference to other documentation and where typically only one site is being considered. As a result, some aspects of the evaluative process have been summarized, but we have tried to focus on an archaeological site’s ability to address significant research topics within the context of its available data sets.

The two previously identified resources (060-0063 and 060-0064) were revisited and rephotographed. While the Archsite GIS failed to record any information on these structures, we were able to locate a 2000 compliance report for the school located to the east across SC 544 (Trinkley 2000). This report describes these two structures and, in addition, records an additional structure (060-0503) in the project APE. All three structures were recommended not eligible for the National Register.

Structure 060-0063 was described as a “ca. 1940 massed hall-and-parlor side-gabled structure with a full-façade engaged shed porch” (Trinkley 2000:21). At the time, the structure was recommended not eligible because it had “been sold and [would] be moved off-site for use as a movie prop” (Trinkley 2000:21). The current survey was unable to locate the structure, so it is likely that the house has long been removed from the site. No additional research was done to see where the structure was removed.

Structure 060-0064 was described as a “ca. 1955 structure with extensive modifications, likely ca. 1975” (Trinkley 2000: 22). This structure was recommended not eligible for the National Register of Historic Places “both because of its recent age and also because of the extensive modifications” (Trinkley 2000:22). The revisit from the current project agrees with the not eligible recommendation (Figure 12).
This structure was revisited during the current survey and we agree with the not eligible recommendation. Even since the 2000 survey, a completely new porch has been added to the house.

No additional resources were identified during the survey that may be potentially eligible for the National Register. The 1988 county-wide architectural survey (Utterback 1988) failed to identify any resources in the project APE.

The 2000 survey also identified another structure, 060-0503, within the APE. This structure is described as being

a massed plan side-gabled structure. It is 1 ½ stories with a porch which originally extended across the front and left facades. Today the side porch has been enclosed, significantly altering its appearance. Other modifications include storm windows and doors, as well as a rear addition. While a structure is shown in this location on the 1918 soil survey map, we believe that the extant house is likely a replacement of an earlier one (which is probably shown on the 1939 highway map). This structure is recommended not eligible for inclusion on the National Register (Trinkley 2000:22).
CONCLUSIONS

This study involved the examination of a 0.6 mile corridor for a transmission line and 0.98 acre lot for a substation in Horry County. This work, conducted for Mr. Tommy L. Jackson of Central Electric Power Cooperative examined archaeological sites and cultural resources found in the proposed project area and is intended to assist this company in complying with their historic preservation responsibilities.

As a result of this investigation, no archaeological sites were found in the survey area. This is likely the result of the lack of high, habitable ground and the distance from a permanent water source. In addition, construction activities including a new CVS pharmacy, road improvements including a ditch, and landscape alteration for pasture and agriculture have damaged the ground surface.

A survey of public roads within 0.5 mile revealed no structures that retain the integrity for the National Register of Historic Places. The two previously identified structures (060-0063 and 060-0064) from the Archsite GIS and the one structure (060-0503) from a previous compliance survey, were revisited during the current project. Structure 060-0063 is no longer on the property. The remaining two structures are both recommended not eligible for the National Register of Historic Places.

It is possible that archaeological remains may be encountered during construction activities. As always, contractors should be advised to report any discoveries of concentrations of artifacts (such as bottles, ceramics, or projectile points) or brick rubble to the project engineer, who should in turn report the material to the State Historic Preservation Office, or Chicora Foundation (the process of dealing with late discoveries is discussed in 36CFR800.13(b)(3)). No further land altering activities should take place in the vicinity of these discoveries until they have been examined by an archaeologist and, if necessary, have been processed according to 36CFR800.13(b)(3).
SOURCES CITED

Anderson, David G.

Anderson, David G., Charles E. Cantley, and A. Lee Novick

Berry, C.B.

Blanton, Dennis B., Christopher T. Espenshade, and Paul E. Brockington, Jr.

Brown, Paul J.
1975 *Coastal Morphology of South Carolina.* Unpublished M.S. Thesis, Department of Geology, University of South Carolina, Columbia.

Cable, John

Caldwell, Joseph R.

Coe, Joffre L.

Cooke, C. Wythe

Derting, Keith M., Sharon L. Pekrul, and Charles J. Rinehart
1991 *A Comprehensive Bibliography of South Carolina Archaeology.* Research Manuscript 211. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Dudley, Travis A.

Ellerbe, Clarence M.
Ferguson, Leland G.
1971 *South Appalachian Mississippian*.
Ph.D. dissertation, University of North Carolina, Chapel Hill.
University Microfilms, Ann Arbor, Michigan.

Fogg-Amed, Erika
1974 Site notes dig Summer of 1964 (and Fall, 1963), Summer of 1965. Field notes on file, S.C. Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Goodyear, Albert C., John H. House, and Neal W. Ackerly
Anthropological Studies 4, Occasional Papers of the Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Hanson, Glen T., Jr.

Küchler, A.W.
1964 *Potential Natural Vegetation of the Conterminous United States*.

Martin, Debra K., Lesley Drucker, and Susan Jackson
1987 *An Archaeological Inventory Survey of S.C. Highway 544 Improvements, Horry County, South Carolina*.

Mathew, William M., editor
1992 *Agriculture, Geology, and Society in Antebellum South Carolina: The Private Diary of Edmund Ruffin, 1843*.
University of Georgia Press, Athens.

Michie, James L.
1977 *The Late Pleistocene Human Occupation of South Carolina*.
Unpublished Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

Mills, Robert
1972 *[1826]Statistics of South Carolina*.

Oliver, Billy L.
1981 *The Piedmont Tradition: Refinement of the Savannah River Stemmed Point Type*.
Unpublished Master's thesis, Department of Anthropology, University of North Carolina, Chapel Hill.

Phelps, David A.
SOURCES CITED

Crow, pp. 1-52. North Carolina Division of Archives and History, Department of Cultural Resources, Raleigh.

Rogers, James S., III

Ryan, Thomas M.

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson
1990 *Native American Prehistory of the Middle Savannah River Valley.* Savannah River Archaeological Research Papers 1. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Service, E.M.

Smith, Lynwood
1933 *Physiography of South Carolina.* Unpublished M.S. Thesis, Department of Geology, University of South Carolina, Columbia.

South, Stanley A.
1976 *An Archaeological Survey of Southeastern North Carolina.* South Carolina Institute of Archaeology and Anthropology

Stoltman, James B.

Taylor, Richard L., editor

Tillman, B.W., W.E. McLendon, H.H. Krusehoff, A.C. Anderson, Cornelius Van Duyne, and W.J. Latimer

Townsend, Jan, John H. Sprinkle, Jr., and John Knoerl

Trinkley, Michael
1980a *Additional Investigations at 38LX5.* South Carolina Department of Highways and Public Transportation, Columbia.

1990 *An Archaeological Context for the South Carolina Woodland Period.* Chicora Foundation Research
CULTURAL RESOURCES SURVEY OF THE LAKE RIDGE 115kV TRANSMISSION PROJECT

Trinkley, Michael and Olga M. Caballero

Trinkley, Michael, Debi Hacker, and Natalie Adams

U.S. Army Corps of Engineers
1973 Flood Plain Information B Waccamaw River, Kingston Lake Swamp, Crab Tree Swamp, City of Conway, South Carolina. Charleston District, Corps of Engineers, Charleston, South Carolina.

Utterback, J. David

Vivian, Daniel J.

Waccamaw Regional Planning and Development Council

Walthall, John A.

Ward, Trawick
1978 The Archaeology of Whites Creek, Marlboro County, South Carolina. Research Laboratories of Anthropology, University of North Carolina, Chapel Hill.

Williams, Stephen B., editor

Woofter, T.J., Jr.
Archaeological Investigations

Historical Research

Preservation

Education

Interpretation

Heritage Marketing

Museum Support Programs